projection matrices generalized inverse matrices and singular value decomposition statistics for social and behavioral sciences

Download Book Projection Matrices Generalized Inverse Matrices And Singular Value Decomposition Statistics For Social And Behavioral Sciences in PDF format. You can Read Online Projection Matrices Generalized Inverse Matrices And Singular Value Decomposition Statistics For Social And Behavioral Sciences here in PDF, EPUB, Mobi or Docx formats.

Projection Matrices Generalized Inverse Matrices And Singular Value Decomposition

Author : Haruo Yanai
ISBN : 144199887X
Genre : Mathematics
File Size : 70. 53 MB
Format : PDF
Download : 517
Read : 181

Get This Book

Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.

Intelligent Digital Oil And Gas Fields

Author : Gustavo Carvajal
ISBN : 9780128047477
Genre : Technology & Engineering
File Size : 42. 26 MB
Format : PDF, ePub
Download : 194
Read : 1237

Get This Book

Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time Decisions delivers to the reader a roadmap through the fast-paced changes in the digital oil field landscape of technology in the form of new sensors, well mechanics such as downhole valves, data analytics and models for dealing with a barrage of data, and changes in the way professionals collaborate on decisions. The book introduces the new age of digital oil and gas technology and process components and provides a backdrop to the value and experience industry has achieved from these in the last few years. The book then takes the reader on a journey first at a well level through instrumentation and measurement for real-time data acquisition, and then provides practical information on analytics on the real-time data. Artificial intelligence techniques provide insights from the data. The road then travels to the "integrated asset" by detailing how companies utilize Integrated Asset Models to manage assets (reservoirs) within DOF context. From model to practice, new ways to operate smart wells enable optimizing the asset. Intelligent Digital Oil and Gas Fields is packed with examples and lessons learned from various case studies and provides extensive references for further reading and a final chapter on the "next generation digital oil field," e.g., cloud computing, big data analytics and advances in nanotechnology. This book is a reference that can help managers, engineers, operations, and IT experts understand specifics on how to filter data to create useful information, address analytics, and link workflows across the production value chain enabling teams to make better decisions with a higher degree of certainty and reduced risk. Covers multiple examples and lessons learned from a variety of reservoirs from around the world and production situations Includes techniques on change management and collaboration Delivers real and readily applicable knowledge on technical equipment, workflows and data challenges such as acquisition and quality control that make up the digital oil and gas field solutions of today Describes collaborative systems and ways of working and how companies are transitioning work force to use the technology and making more optimal decisions

New Perspectives In Partial Least Squares And Related Methods

Author : Herve Abdi
ISBN : 9781461482833
Genre : Mathematics
File Size : 81. 16 MB
Format : PDF
Download : 198
Read : 703

Get This Book

New Perspectives in Partial Least Squares and Related Methods shares original, peer-reviewed research from presentations during the 2012 partial least squares methods meeting (PLS 2012). This was the 7th meeting in the series of PLS conferences and the first to take place in the USA. PLS is an abbreviation for Partial Least Squares and is also sometimes expanded as projection to latent structures. This is an approach for modeling relations between data matrices of different types of variables measured on the same set of objects. The twenty-two papers in this volume, which include three invited contributions from our keynote speakers, provide a comprehensive overview of the current state of the most advanced research related to PLS and related methods. Prominent scientists from around the world took part in PLS 2012 and their contributions covered the multiple dimensions of the partial least squares-based methods. These exciting theoretical developments ranged from partial least squares regression and correlation, component based path modeling to regularized regression and subspace visualization. In following the tradition of the six previous PLS meetings, these contributions also included a large variety of PLS approaches such as PLS metamodels, variable selection, sparse PLS regression, distance based PLS, significance vs. reliability, and non-linear PLS. Finally, these contributions applied PLS methods to data originating from the traditional econometric/economic data to genomics data, brain images, information systems, epidemiology, and chemical spectroscopy. Such a broad and comprehensive volume will also encourage new uses of PLS models in work by researchers and students in many fields.

Linear Models In Matrix Form

Author : Jonathon D. Brown
ISBN : 9783319117348
Genre : Social Science
File Size : 70. 12 MB
Format : PDF, ePub
Download : 314
Read : 634

Get This Book

This textbook is an approachable introduction to statistical analysis using matrix algebra. Prior knowledge of matrix algebra is not necessary. Advanced topics are easy to follow through analyses that were performed on an open-source spreadsheet using a few built-in functions. These topics include ordinary linear regression, as well as maximum likelihood estimation, matrix decompositions, nonparametric smoothers and penalized cubic splines. Each data set (1) contains a limited number of observations to encourage readers to do the calculations themselves, and (2) tells a coherent story based on statistical significance and confidence intervals. In this way, students will learn how the numbers were generated and how they can be used to make cogent arguments about everyday matters. This textbook is designed for use in upper level undergraduate courses or first year graduate courses. The first chapter introduces students to linear equations, then covers matrix algebra, focusing on three essential operations: sum of squares, the determinant, and the inverse. These operations are explained in everyday language, and their calculations are demonstrated using concrete examples. The remaining chapters build on these operations, progressing from simple linear regression to mediational models with bootstrapped standard errors.

Matrix Analysis For Statistics

Author : James R. Schott
ISBN : 9781119092483
Genre : Mathematics
File Size : 63. 14 MB
Format : PDF
Download : 734
Read : 231

Get This Book

An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

Linear Model Theory

Author : Keith E. Muller
ISBN : 9780470052136
Genre : Mathematics
File Size : 42. 58 MB
Format : PDF, ePub, Docs
Download : 625
Read : 199

Get This Book

A precise and accessible presentation of linear model theory, illustrated with data examples Statisticians often use linear models for data analysis and for developing new statistical methods. Most books on the subject have historically discussed univariate, multivariate, and mixed linear models separately, whereas Linear Model Theory: Univariate, Multivariate, and Mixed Models presents a unified treatment in order to make clear the distinctions among the three classes of models. Linear Model Theory: Univariate, Multivariate, and Mixed Models begins with six chapters devoted to providing brief and clear mathematical statements of models, procedures, and notation. Data examples motivate and illustrate the models. Chapters 7-10 address distribution theory of multivariate Gaussian variables and quadratic forms. Chapters 11-19 detail methods for estimation, hypothesis testing, and confidence intervals. The final chapters, 20-23, concentrate on choosing a sample size. Substantial sets of excercises of varying difficulty serve instructors for their classes, as well as help students to test their own knowledge. The reader needs a basic knowledge of statistics, probability, and inference, as well as a solid background in matrix theory and applied univariate linear models from a matrix perspective. Topics covered include: A review of matrix algebra for linear models The general linear univariate model The general linear multivariate model Generalizations of the multivariate linear model The linear mixed model Multivariate distribution theory Estimation in linear models Tests in Gaussian linear models Choosing a sample size in Gaussian linear models Filling the need for a text that provides the necessary theoretical foundations for applying a wide range of methods in real situations, Linear Model Theory: Univariate, Multivariate, and Mixed Models centers on linear models of interval scale responses with finite second moments. Models with complex predictors, complex responses, or both, motivate the presentation.

A Matrix Handbook For Statisticians

Author : George A. F. Seber
ISBN : 0470226781
Genre : Mathematics
File Size : 51. 34 MB
Format : PDF, ePub, Mobi
Download : 286
Read : 937

Get This Book

A comprehensive, must-have handbook of matrix methods with a unique emphasis on statistical applications This timely book, A Matrix Handbook for Statisticians, provides a comprehensive, encyclopedic treatment of matrices as they relate to both statistical concepts and methodologies. Written by an experienced authority on matrices and statistical theory, this handbook is organized by topic rather than mathematical developments and includes numerous references to both the theory behind the methods and the applications of the methods. A uniform approach is applied to each chapter, which contains four parts: a definition followed by a list of results; a short list of references to related topics in the book; one or more references to proofs; and references to applications. The use of extensive cross-referencing to topics within the book and external referencing to proofs allows for definitions to be located easily as well as interrelationships among subject areas to be recognized. A Matrix Handbook for Statisticians addresses the need for matrix theory topics to be presented together in one book and features a collection of topics not found elsewhere under one cover. These topics include: Complex matrices A wide range of special matrices and their properties Special products and operators, such as the Kronecker product Partitioned and patterned matrices Matrix analysis and approximation Matrix optimization Majorization Random vectors and matrices Inequalities, such as probabilistic inequalities Additional topics, such as rank, eigenvalues, determinants, norms, generalized inverses, linear and quadratic equations, differentiation, and Jacobians, are also included. The book assumes a fundamental knowledge of vectors and matrices, maintains a reasonable level of abstraction when appropriate, and provides a comprehensive compendium of linear algebra results with use or potential use in statistics. A Matrix Handbook for Statisticians is an essential, one-of-a-kind book for graduate-level courses in advanced statistical studies including linear and nonlinear models, multivariate analysis, and statistical computing. It also serves as an excellent self-study guide for statistical researchers.

Linear Algebra

Author : Richard C. Penney
ISBN : 9781118909584
Genre : Mathematics
File Size : 88. 29 MB
Format : PDF, ePub, Docs
Download : 267
Read : 724

Get This Book

Praise for the Third Edition "This volume is ground-breaking in terms of mathematical texts in that it does not teach from a detached perspective, but instead, looks to show students that competent mathematicians bring an intuitive understanding to the subject rather than just a master of applications." — Electric Review A comprehensive introduction, Linear Algebra: Ideas and Applications, Fourth Edition provides a discussion of the theory and applications of linear algebra that blends abstract and computational concepts. With a focus on the development of mathematical intuition, the book emphasizes the need to understand both the applications of a particular technique and the mathematical ideas underlying the technique. The book introduces each new concept in the context of an explicit numerical example, which allows the abstract concepts to grow organically out of the necessity to solve specific problems. The intuitive discussions are consistently followed by rigorous statements of results and proofs. Linear Algebra: Ideas and Applications, Fourth Edition also features: Two new and independent sections on the rapidly developing subject of wavelets A thoroughly updated section on electrical circuit theory Illuminating applications of linear algebra with self-study questions for additional study End-of-chapter summaries and sections with true-false questions to aid readers with further comprehension of the presented material Numerous computer exercises throughout using MATLAB® code A companion website with translations of the book’s computer exercises into MapleTM code Linear Algebra: Ideas and Applications, Fourth Edition is an excellent undergraduate-level textbook for one or two semester undergraduate courses in mathematics, science, computer science, and engineering. With an emphasis on intuition development, the book is also an ideal self-study reference. Richard C. Penney, PhD, is Professor in the Department of Mathematics and Director of the Mathematics/Statistics Actuarial Science Program at Purdue University. He has authored numerous journal articles, received several major teaching awards, and is an active researcher.

Statistical Learning With Sparsity

Author : Trevor Hastie
ISBN : 9781498712170
Genre : Business & Economics
File Size : 65. 86 MB
Format : PDF, ePub, Mobi
Download : 240
Read : 712

Get This Book

Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of l1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.


Author : Foo-Tim Chau
ISBN : 0471454737
Genre : Science
File Size : 51. 66 MB
Format : PDF, ePub
Download : 731
Read : 1277

Get This Book

Wavelet Transformations and Their Applications in Chemistry pioneers a new approach to classifying existing chemometric techniques for data analysis in one and two dimensions, using a practical applications approach to illustrating chemical examples and problems. Written in a simple, balanced, applications-based style, the book is geared to both theorists and non-mathematicians. This text emphasizes practical applications in chemistry. It employs straightforward language and examples to show the power of wavelet transforms without overwhelming mathematics, reviews other methods, and compares wavelets with other techniques that provide similar capabilities. It uses examples illustrated in MATLAB codes to assist chemists in developing applications, and includes access to a supplementary Web site providing code and data sets for work examples. Wavelet Transformations and Their Applications in Chemistry will prove essential to professionals and students working in analytical chemistry and process chemistry, as well as physical chemistry, spectroscopy, and statistics.

Top Download:

Best Books