regression modeling methods theory and computation with sas

Download Book Regression Modeling Methods Theory And Computation With Sas in PDF format. You can Read Online Regression Modeling Methods Theory And Computation With Sas here in PDF, EPUB, Mobi or Docx formats.

Regression Modeling

Author : Michael Panik
ISBN : 9781420091984
Genre : Mathematics
File Size : 79. 78 MB
Format : PDF, Mobi
Download : 573
Read : 588

Get This Book


Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs. The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression, L1 and q-quantile regression, regression in a spatial domain, ridge regression, semiparametric regression, nonlinear least squares, and time-series regression issues. For most of the regression methods, the author includes SAS procedure code, enabling readers to promptly perform their own regression runs. A Comprehensive, Accessible Source on Regression Methodology and Modeling Requiring only basic knowledge of statistics and calculus, this book discusses how to use regression analysis for decision making and problem solving. It shows readers the power and diversity of regression techniques without overwhelming them with calculations.

Logistic Regression Using Sas

Author : Paul D. Allison
ISBN : 9781607649953
Genre : Mathematics
File Size : 21. 31 MB
Format : PDF, ePub
Download : 929
Read : 403

Get This Book


If you are a researcher or student with experience in multiple linear regression and want to learn about logistic regression, Paul Allison's Logistic Regression Using SAS: Theory and Application, Second Edition, is for you! Informal and nontechnical, this book both explains the theory behind logistic regression, and looks at all the practical details involved in its implementation using SAS. Several real-world examples are included in full detail. This book also explains the differences and similarities among the many generalizations of the logistic regression model. The following topics are covered: binary logistic regression, logit analysis of contingency tables, multinomial logit analysis, ordered logit analysis, discrete-choice analysis, and Poisson regression. Other highlights include discussions on how to use the GENMOD procedure to do loglinear analysis and GEE estimation for longitudinal binary data. Only basic knowledge of the SAS DATA step is assumed. The second edition describes many new features of PROC LOGISTIC, including conditional logistic regression, exact logistic regression, generalized logit models, ROC curves, the ODDSRATIO statement (for analyzing interactions), and the EFFECTPLOT statement (for graphing nonlinear effects). Also new is coverage of PROC SURVEYLOGISTIC (for complex samples), PROC GLIMMIX (for generalized linear mixed models), PROC QLIM (for selection models and heterogeneous logit models), and PROC MDC (for advanced discrete choice models). This book is part of the SAS Press program.

Fixed Effects Regression Methods For Longitudinal Data Using Sas

Author : Paul D. Allison
ISBN : 1590477782
Genre : Mathematics
File Size : 84. 12 MB
Format : PDF, Mobi
Download : 305
Read : 424

Get This Book


Fixed Effects Regression Methods for Longitudinal Data Using SAS, written by Paul Allison, is an invaluable resource for all researchers interested in adding fixed effects regression methods to their tool kit of statistical techniques. First introduced by economists, fixed effects methods are gaining widespread use throughout the social sciences. Designed to eliminate major biases from regression models with multiple observations (usually longitudinal) for each subject (usually a person), fixed effects methods essentially offer control for all stable characteristics of the subjects, even characteristics that are difficult or impossible to measure. This straightforward and thorough text shows you how to estimate fixed effects models with several SAS procedures that are appropriate for different kinds of outcome variables. The theoretical background of each model is explained, and the models are then illustrated with detailed examples using real data. The book contains thorough discussions of the following uses of SAS procedures: PROC GLM for estimating fixed effects linear models for quantitative outcomes, PROC LOGISTIC for estimating fixed effects logistic regression models, PROC PHREG for estimating fixed effects Cox regression models for repeated event data, PROC GENMOD for estimating fixed effects Poisson regression models for count data, and PROC CALIS for estimating fixed effects structural equation models. To gain the most benefit from this book, readers should be familiar with multiple linear regression, have practical experience using multiple regression on real data, and be comfortable interpreting the output from a regression analysis. An understanding of logistic regression and Poisson regression is a plus. Some experience with SAS is helpful, but not required. This book is part of the SAS Press program.

Linear Regression Analysis

Author : Xin Yan
ISBN : 9789812834119
Genre : Mathematics
File Size : 70. 86 MB
Format : PDF, Kindle
Download : 360
Read : 923

Get This Book


This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields.

Design And Analysis Of Experiments

Author : Leonard C. Onyiah
ISBN : 9781420060553
Genre : Mathematics
File Size : 71. 29 MB
Format : PDF, Docs
Download : 241
Read : 1318

Get This Book


Unlike other books on the modeling and analysis of experimental data, Design and Analysis of Experiments: Classical and Regression Approaches with SAS not only covers classical experimental design theory, it also explores regression approaches. Capitalizing on the availability of cutting-edge software, the author uses both manual methods and SAS programs to carry out analyses. The book presents most of the different designs covered in a typical experimental design course. It discusses the requirements for good experimentation, the completely randomized design, the use of orthogonal contrast to test hypotheses, and the model adequacy check. With an emphasis on two-factor factorial experiments, the author analyzes repeated measures as well as fixed, random, and mixed effects models. He also describes designs with randomization restrictions, before delving into the special cases of the 2k and 3k factorial designs, including fractional replication and confounding. In addition, the book covers response surfaces, balanced incomplete block and hierarchical designs, ANOVA, ANCOVA, and MANOVA. Fortifying the theory and computations with practical exercises and supplemental material, this distinctive text provides a modern, comprehensive treatment of experimental design and analysis.

Handbook Of Regression Methods

Author : Derek S. Young
ISBN : 1498775292
Genre : Multivariate analysis
File Size : 66. 53 MB
Format : PDF, Mobi
Download : 962
Read : 1315

Get This Book


This book is intended to read like a handbook for regression methods. It provides a broad survey of both standard and non-standard regression models and topics. Thus, the treatment includes topics that would typically be covered in a master's-level statistics course in regression (e.g., simple/multiple linear regression, residual analysis, and ANOVA; as well as more specialized topics like biased regression procedures, multivariate regression, and count regression models).

Sas For Data Analysis

Author : Mervyn G. Marasinghe
ISBN : 038777372X
Genre : Mathematics
File Size : 31. 88 MB
Format : PDF, ePub
Download : 995
Read : 545

Get This Book


This book is intended for use as the textbook in a second course in applied statistics that covers topics in multiple regression and analysis of variance at an intermediate level. Generally, students enrolled in such courses are p- marily graduate majors or advanced undergraduate students from a variety of disciplines. These students typically have taken an introductory-level s- tistical methods course that requires the use a software system such as SAS for performing statistical analysis. Thus students are expected to have an - derstanding of basic concepts of statistical inference such as estimation and hypothesis testing. Understandably, adequate time is not available in a ?rst course in stat- tical methods to cover the use of a software system adequately in the amount of time available for instruction. The aim of this book is to teach how to use the SAS system for data analysis. The SAS language is introduced at a level of sophistication not found in most introductory SAS books. Important features such as SAS data step programming, pointers, and line-hold spe- ?ers are described in detail. The powerful graphics support available in SAS is emphasized throughout, and many worked SAS program examples contain graphic components.

Applied Multivariate Statistics With Sas Software Second Edition

Author : Ravindra Khattree
ISBN : 1590476395
Genre : Computers
File Size : 41. 23 MB
Format : PDF, Mobi
Download : 244
Read : 1232

Get This Book


The authors' approach to the information aids professors, researchers, and students in a variety of disciplines and industries. Extensive SAS code and the corresponding output accompany sample problems, and clear explanations of the various SAS procedures are included. Emphasis is on correct interpretation of the output to draw meaningful conclusions. Featuring both the theoretical and the practical, topics covered include multivariate analysis of experimental data and repeated measures data, graphical representation of data including biplots, and multivariate regression. In addition, a quick introduction to the IML procedure with special reference to multivariate data is available in an appendix. SAS programs and output integrated with the text make it easy to read and follow the examples. High-resolution graphs have been used in this new edition.

Applied Linear Regression

Author : Sanford Weisberg
ISBN : UOM:39015059097769
Genre : Mathematics
File Size : 86. 97 MB
Format : PDF, ePub, Docs
Download : 918
Read : 420

Get This Book


Nonlinear Statistical Methods A. Ronald Gallant Describes the recent advances in statistical and probability theory that have removed obstacles to an adequate theory of estimation and inference for nonlinear models. Thoroughly explains theory, methods, computations, and applications. Covers the three major categories of statistical models that relate dependent variables to explanatory variables: univariate regression models, multivariate regression models, and simultaneous equations models. Includes many figures which illustrate computations with SAS(R) code and resulting output. 1987 (0 471-80260-3) 610 pp. Exploring Data Tables, Trends, and Shapes Edited by David C. Hoaglin, Frederick Mosteller, and John W. Tukey Together with its companion volume, Understanding Robust and Exploratory Data Analysis, this work provides a definitive account of exploratory and robust/resistant statistics. It presents a variety of more advanced techniques and extensions of basic exploratory tools, explains why these further developments are valuable, and provides insight into how and why they were invented. In addition to illustrating these techniques, the book traces aspects of their development from classical statistical theory. 1985 (0 471-09776-4) 672 pp. Robust Regression & Outlier Detection Peter J. Rousseeuw and Annick M. Leroy An introduction to robust statistical techniques that have been developed to isolate or identify outliers. Emphasizes simple, intuitive ideas and their application in actual use. No prior knowledge of the field is required. Discusses robustness in regression, simple regression, robust multiple regression, the special case of one-dimensional location, and outlier diagnostics. Also presents an outlook of robustness in related fields such as time series analysis. Emphasizes "high-breakdown" methods that can cope with a sizable fraction of contamination. Focuses on the least median of squares method, which appeals to the intuition and is easy to use. 1987 (0 471-85233-3) 329 pp.

Multiple Imputation Of Missing Data Using Sas

Author : Patricia Berglund
ISBN : 9781629592039
Genre : Mathematics
File Size : 80. 20 MB
Format : PDF, Kindle
Download : 784
Read : 1257

Get This Book


Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.

Top Download:

Best Books