spatial data analysis in ecology and agriculture using r

Download Book Spatial Data Analysis In Ecology And Agriculture Using R in PDF format. You can Read Online Spatial Data Analysis In Ecology And Agriculture Using R here in PDF, EPUB, Mobi or Docx formats.

Spatial Data Analysis In Ecology And Agriculture Using R

Author : Richard E. Plant
ISBN : 9781439819135
Genre : Mathematics
File Size : 20. 11 MB
Format : PDF, Docs
Download : 497
Read : 1311

Get This Book


Assuming no prior knowledge of R, Spatial Data Analysis in Ecology and Agriculture Using R provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology and agriculture. Written in terms of four data sets easily accessible online, this book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Based on the author’s spatial data analysis course at the University of California, Davis, the book is intended for classroom use or self-study by graduate students and researchers in ecology, geography, and agricultural science with an interest in the analysis of spatial data.

Spatial Data Analysis In Ecology And Agriculture Using R

Author : Richard E. Plant
ISBN : 9781439819142
Genre : Mathematics
File Size : 48. 79 MB
Format : PDF
Download : 911
Read : 551

Get This Book


Assuming no prior knowledge of R, Spatial Data Analysis in Ecology and Agriculture Using R provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology and agriculture. Written in terms of four data sets easily accessible online, this book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Based on the author’s spatial data analysis course at the University of California, Davis, the book is intended for classroom use or self-study by graduate students and researchers in ecology, geography, and agricultural science with an interest in the analysis of spatial data.

Numerical Ecology With R

Author : Daniel Borcard
ISBN : 9783319714042
Genre : Mathematics
File Size : 42. 72 MB
Format : PDF, Docs
Download : 465
Read : 220

Get This Book


This new edition of Numerical Ecology with R guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary multivariate ecological analysis. The second edition of this book features a complete revision to the R code and offers improved procedures and more diverse applications of the major methods. It also highlights important changes in the methods and expands upon topics such as multiple correspondence analysis, principal response curves and co-correspondence analysis. New features include the study of relationships between species traits and the environment, and community diversity analysis. This book is aimed at professional researchers, practitioners, graduate students and teachers in ecology, environmental science and engineering, and in related fields such as oceanography, molecular ecology, agriculture and soil science, who already have a background in general and multivariate statistics and wish to apply this knowledge to their data using the R language, as well as people willing to accompany their disciplinary learning with practical applications. People from other fields (e.g. geology, geography, paleoecology, phylogenetics, anthropology, the social and education sciences, etc.) may also benefit from the materials presented in this book. Users are invited to use this book as a teaching companion at the computer. All the necessary data files, the scripts used in the chapters, as well as extra R functions and packages written by the authors of the book, are available online (URL: http://adn.biol.umontreal.ca/~numericalecology/numecolR/).

Remote Sensing And Gis For Ecologists

Author : Martin Wegmann
ISBN : 9781784270247
Genre : Science
File Size : 59. 96 MB
Format : PDF
Download : 510
Read : 202

Get This Book


This is a book about how ecologists can integrate remote sensing and GIS in their daily work. It will allow ecologists to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. All practical examples in this book rely on OpenSource software and freely available data sets. Quantum GIS (QGIS) is introduced for basic GIS data handling, and in-depth spatial analytics and statistics are conducted with the software packages R and GRASS. Readers will learn how to apply remote sensing within ecological research projects, how to approach spatial data sampling and how to interpret remote sensing derived products. The authors discuss a wide range of statistical analyses with regard to satellite data as well as specialised topics such as time-series analysis. Extended scripts on how to create professional looking maps and graphics are also provided. This book is a valuable resource for students and scientists in the fields of conservation and ecology interested in learning how to get started in applying remote sensing in ecological research and conservation planning.

Spatial Analysis

Author : Mark R. T. Dale
ISBN : 9781139991445
Genre : Nature
File Size : 34. 56 MB
Format : PDF, Kindle
Download : 511
Read : 750

Get This Book


Nowadays, ecologists worldwide recognize the use of spatial analysis as essential. However, because of the fast-growing range of methods available, even an expert might occasionally find it challenging to choose the most appropriate one. Providing the ecological and statistical foundations needed to make the right decision, this second edition builds and expands upon the previous one by: • Encompassing the basic methods for spatial analysis, for both complete census and sample data • Investigating updated treatments of spatial autocorrelation and spatio-temporal analysis • Introducing detailed explanations of currently developing approaches, including spatial and spatio-temporal graph theory, scan statistics, fibre process analysis, and Hierarchical Bayesian analysis • Offering practical advice for specific circumstances, such as how to analyze forest Permanent Sample Plot data and how to proceed with transect data when portions of the data series are missing. Written for graduates, researchers and professionals, this book will be a valuable source of reference for years to come.

Data Analysis In Vegetation Ecology 3rd Edition

Author : Otto Wildi
ISBN : 9781786394224
Genre : Science
File Size : 67. 36 MB
Format : PDF, Docs
Download : 392
Read : 643

Get This Book


The 3rd edition of this popular textbook introduces the reader to the investigation of vegetation systems with an emphasis on data analysis. The book succinctly illustrates the various paths leading to high quality data suitable for pattern recognition, pattern testing, static and dynamic modelling and model testing including spatial and temporal aspects of ecosystems. Step-by-step introductions using small examples lead to more demanding approaches illustrated by real world examples aimed at explaining interpretations. All data sets and examples described in the book are available online and are written using the freely available statistical package R. This book will be of particular value to beginning graduate students and postdoctoral researchers of vegetation ecology, ecological data analysis, and ecological modelling, and experienced researchers needing a guide to new methods. A completely revised and updated edition of this popular introduction to data analysis in vegetation ecology. Includes practical step-by-step examples using the freely available statistical package R. Complex concepts and operations are explained using clear illustrations and case studies relating to real world phenomena. Emphasizes method selection rather than just giving a set of recipes.

Applied Spatial Data Analysis With R

Author : Roger S. Bivand
ISBN : 9781461476184
Genre : Medical
File Size : 26. 73 MB
Format : PDF, Kindle
Download : 706
Read : 292

Get This Book


Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.

Statistical Methods For Spatial Data Analysis

Author : Oliver Schabenberger
ISBN : 9781482258134
Genre : Mathematics
File Size : 64. 72 MB
Format : PDF, ePub, Mobi
Download : 532
Read : 177

Get This Book


Understanding spatial statistics requires tools from applied and mathematical statistics, linear model theory, regression, time series, and stochastic processes. It also requires a mindset that focuses on the unique characteristics of spatial data and the development of specialized analytical tools designed explicitly for spatial data analysis. Statistical Methods for Spatial Data Analysis answers the demand for a text that incorporates all of these factors by presenting a balanced exposition that explores both the theoretical foundations of the field of spatial statistics as well as practical methods for the analysis of spatial data. This book is a comprehensive and illustrative treatment of basic statistical theory and methods for spatial data analysis, employing a model-based and frequentist approach that emphasizes the spatial domain. It introduces essential tools and approaches including: measures of autocorrelation and their role in data analysis; the background and theoretical framework supporting random fields; the analysis of mapped spatial point patterns; estimation and modeling of the covariance function and semivariogram; a comprehensive treatment of spatial analysis in the spectral domain; and spatial prediction and kriging. The volume also delivers a thorough analysis of spatial regression, providing a detailed development of linear models with uncorrelated errors, linear models with spatially-correlated errors and generalized linear mixed models for spatial data. It succinctly discusses Bayesian hierarchical models and concludes with reviews on simulating random fields, non-stationary covariance, and spatio-temporal processes. Additional material on the CRC Press website supplements the content of this book. The site provides data sets used as examples in the text, software code that can be used to implement many of the principal methods described and illustrated, and updates to the text itself.

Statistical Data Analysis Explained

Author : Clemens Reimann
ISBN : 9781119965282
Genre : Science
File Size : 77. 3 MB
Format : PDF, ePub, Mobi
Download : 705
Read : 1238

Get This Book


Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.

Using R For Digital Soil Mapping

Author : Brendan P. Malone
ISBN : 9783319443270
Genre : Nature
File Size : 55. 9 MB
Format : PDF, Mobi
Download : 303
Read : 820

Get This Book


This book describes and provides many detailed examples of implementing Digital Soil Mapping (DSM) using R. The work adheres to Digital Soil Mapping theory, and presents a strong focus on how to apply it. DSM exercises are also included and cover procedures for handling and manipulating soil and spatial data in R. The book also introduces the basic concepts and practices for building spatial soil prediction functions, and then ultimately producing digital soil maps.

Top Download:

Best Books