statistical analysis of spherical data

Download Book Statistical Analysis Of Spherical Data in PDF format. You can Read Online Statistical Analysis Of Spherical Data here in PDF, EPUB, Mobi or Docx formats.

Statistical Analysis Of Spherical Data

Author : N. I. Fisher
ISBN : 0521456991
Genre : Mathematics
File Size : 73. 88 MB
Format : PDF, ePub
Download : 501
Read : 1065

Get This Book


This is the first comprehensive, yet clearly presented, account of statistical methods for analysing spherical data. The analysis of data, in the form of directions in space or of positions of points on a spherical surface, is required in many contexts in the earth sciences, astrophysics and other fields, yet the methodology required is disseminated throughout the literature. Statistical Analysis of Spherical Data aims to present a unified and up-to-date account of these methods for practical use. The emphasis is on applications rather than theory, with the statistical methods being illustrated throughout the book by data examples.

Statistical Analysis Of Spherical Data

Author : Ola Amayri
ISBN : OCLC:1032996324
Genre :
File Size : 75. 49 MB
Format : PDF, Docs
Download : 255
Read : 1094

Get This Book



Statistical Analysis Of Circular Data

Author : N. I. Fisher
ISBN : 0521568900
Genre : Mathematics
File Size : 67. 79 MB
Format : PDF, Docs
Download : 537
Read : 322

Get This Book


This book provides a unified and up-to-date account of techniques for handling circular data, and will interest all who perform data analyses.

Circular Statistics In R

Author : Arthur Pewsey
ISBN : 9780191650765
Genre : Mathematics
File Size : 79. 63 MB
Format : PDF
Download : 723
Read : 633

Get This Book


Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its "circular" package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible.

Directional Statistics

Author : Kanti V. Mardia
ISBN : 9780470317815
Genre : Mathematics
File Size : 59. 45 MB
Format : PDF, ePub, Mobi
Download : 424
Read : 417

Get This Book


Presents new and up-dated material on both the underlying theory and the practical methodology of directional statistics, helping the reader to utilise and develop the techniques appropriate to their work. The book is divided into three parts. The first part concentrates on statistics on the circle. Topics covered include tests of uniformity, tests of good-of-fit, inference on von Mises distributions and non-parametric methods. The second part considers statistics on spheres of arbitrary dimension, and includes a detailed account of inference on the main distributions on spheres. Recent material on correlation, regression time series, robust techniques, bootstrap methods, density estimation and curve fitting is presented. The third part considers statistics on more general sample spaces, in particular rotation groups, Stiefel manifolds, Grassmann manifolds and complex projective spaces. Shape analysis is considered from the perspective of directional statistics. Written by leading authors in the field, this text will be invaluable not only to researchers in probability and statistics interested in the latest developments in directional statistics, but also to practitioners and researchers in many scientific fields, including astronomy, biology, computer vision, earth sciences and image analysis.

Modern Directional Statistics

Author : Christophe Ley
ISBN : 9781351645782
Genre : Computers
File Size : 71. 95 MB
Format : PDF, ePub, Docs
Download : 727
Read : 157

Get This Book


Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.

Statistics Of Earth Science Data

Author : Graham J. Borradaile
ISBN : 9783662052235
Genre : Mathematics
File Size : 39. 86 MB
Format : PDF, ePub, Docs
Download : 188
Read : 617

Get This Book


From the reviews: "All in all, Graham Borradaile has written and interesting and idiosyncratic book on statistics for geoscientists that will be welcome among students, researchers, and practitioners dealing with orientation data. That should include engineering geologists who work with things like rock fracture orientation measurements or clast alignment in paleoseismic trenches. It won’t replace the collection of statistics and geostatistics texts in my library, but it will have a place among them and will likely be one of several references to which I turn when working with orientation data.... The text is easy to follow and illustrations are generally clear and easy to read..."(William C. Haneberg, Haneberg Geoscience)

Data Smart

Author : John W. Foreman
ISBN : 9781118839867
Genre : Business & Economics
File Size : 74. 63 MB
Format : PDF, ePub, Docs
Download : 411
Read : 1060

Get This Book


Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Permutation Methods

Author : Paul W. Mielke
ISBN : 9780387698137
Genre : Mathematics
File Size : 55. 75 MB
Format : PDF, Kindle
Download : 901
Read : 817

Get This Book


This is the second edition of the comprehensive treatment of statistical inference using permutation techniques. It makes available to practitioners a variety of useful and powerful data analytic tools that rely on very few distributional assumptions. Although many of these procedures have appeared in journal articles, they are not readily available to practitioners. This new and updated edition places increased emphasis on the use of alternative permutation statistical tests based on metric Euclidean distance functions that have excellent robustness characteristics. These alternative permutation techniques provide many powerful multivariate tests including multivariate multiple regression analyses.

Statistical Analysis Of Circular Data

Author : N. I. Fisher
ISBN : 0521568900
Genre : Mathematics
File Size : 49. 98 MB
Format : PDF, ePub, Docs
Download : 920
Read : 966

Get This Book


This book provides a unified and up-to-date account of techniques for handling circular data, and will interest all who perform data analyses.

Top Download:

Best Books