statistical methods in computer security statistics a series of textbooks and monographs

Download Book Statistical Methods In Computer Security Statistics A Series Of Textbooks And Monographs in PDF format. You can Read Online Statistical Methods In Computer Security Statistics A Series Of Textbooks And Monographs here in PDF, EPUB, Mobi or Docx formats.

Statistical Methods In Computer Security

Author : William W.S. Chen
ISBN : 9781420030884
Genre : Mathematics
File Size : 52. 99 MB
Format : PDF, Kindle
Download : 406
Read : 461

Download Now


Statistical Methods in Computer Security summarizes discussions held at the recent Joint Statistical Meeting to provide a clear layout of current applications in the field. This blue-ribbon reference discusses the most influential advancements in computer security policy, firewalls, and security issues related to passwords. It addresses crime and misconduct on the Internet, considers the development of infrastructures that may prevent breaches of security and law, and illustrates the vulnerability of networked computers to new virus attacks despite widespread deployment of antivirus software, firewalls, and other network security equipment.

Applied Time Series Analysis

Author : Wayne A. Woodward
ISBN : 9781439818374
Genre : Mathematics
File Size : 62. 32 MB
Format : PDF
Download : 133
Read : 340

Download Now


Virtually any random process developing chronologically can be viewed as a time series. In economics, closing prices of stocks, the cost of money, the jobless rate, and retail sales are just a few examples of many. Developed from course notes and extensively classroom-tested, Applied Time Series Analysis includes examples across a variety of fields, develops theory, and provides software to address time series problems in a broad spectrum of fields. The authors organize the information in such a format that graduate students in applied science, statistics, and economics can satisfactorily navigate their way through the book while maintaining mathematical rigor. One of the unique features of Applied Time Series Analysis is the associated software, GW-WINKS, designed to help students easily generate realizations from models and explore the associated model and data characteristics. The text explores many important new methodologies that have developed in time series, such as ARCH and GARCH processes, time varying frequencies (TVF), wavelets, and more. Other programs (some written in R and some requiring S-plus) are available on an associated website for performing computations related to the material in the final four chapters.

A Kalman Filter Primer

Author : Randall L. Eubank
ISBN : 1420028677
Genre : Mathematics
File Size : 31. 1 MB
Format : PDF, Mobi
Download : 598
Read : 579

Download Now


System state estimation in the presence of noise is critical for control systems, signal processing, and many other applications in a variety of fields. Developed decades ago, the Kalman filter remains an important, powerful tool for estimating the variables in a system in the presence of noise. However, when inundated with theory and vast notations, learning just how the Kalman filter works can be a daunting task. With its mathematically rigorous, “no frills” approach to the basic discrete-time Kalman filter, A Kalman Filter Primer builds a thorough understanding of the inner workings and basic concepts of Kalman filter recursions from first principles. Instead of the typical Bayesian perspective, the author develops the topic via least-squares and classical matrix methods using the Cholesky decomposition to distill the essence of the Kalman filter and reveal the motivations behind the choice of the initializing state vector. He supplies pseudo-code algorithms for the various recursions, enabling code development to implement the filter in practice. The book thoroughly studies the development of modern smoothing algorithms and methods for determining initial states, along with a comprehensive development of the “diffuse” Kalman filter. Using a tiered presentation that builds on simple discussions to more complex and thorough treatments, A Kalman Filter Primer is the perfect introduction to quickly and effectively using the Kalman filter in practice.

Univariate And Multivariate General Linear Models

Author : Kevin Kim
ISBN : 158488634X
Genre : Mathematics
File Size : 54. 89 MB
Format : PDF, Kindle
Download : 622
Read : 640

Download Now


Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral sciences. With revised examples that include options available using SAS 9.0, this expanded edition divides theory from applications within each chapter. Following an overview of the GLM, the book introduces unrestricted GLMs to analyze multiple regression and ANOVA designs as well as restricted GLMs to study ANCOVA designs and repeated measurement designs. Extensions of these concepts include GLMs with heteroscedastic errors that encompass weighted least squares regression and categorical data analysis, and multivariate GLMs that cover multivariate regression analysis, MANOVA, MANCOVA, and repeated measurement data analyses. The book also analyzes double multivariate linear, growth curve, seeming unrelated regression (SUR), restricted GMANOVA, and hierarchical linear models. New to the Second Edition Two chapters on finite intersection tests and power analysis that illustrates the experimental GLMPOWER procedure Expanded theory of unrestricted general linear, multivariate general linear, SUR, and restricted GMANOVA models to comprise recent developments Expanded material on missing data to include multiple imputation and the EM algorithm Applications of MI, MIANALYZE, TRANSREG, and CALIS procedures A practical introduction to GLMs, Univariate and Multivariate General Linear Models demonstrates how to fully grasp the generality of GLMs by discussing them within a general framework.

Statistical Inference Based On Divergence Measures

Author : Leandro Pardo
ISBN : 1420034812
Genre : Mathematics
File Size : 53. 48 MB
Format : PDF, ePub, Mobi
Download : 907
Read : 684

Download Now


The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this powerful approach. Statistical Inference Based on Divergence Measures explores classical problems of statistical inference, such as estimation and hypothesis testing, on the basis of measures of entropy and divergence. The first two chapters form an overview, from a statistical perspective, of the most important measures of entropy and divergence and study their properties. The author then examines the statistical analysis of discrete multivariate data with emphasis is on problems in contingency tables and loglinear models using phi-divergence test statistics as well as minimum phi-divergence estimators. The final chapter looks at testing in general populations, presenting the interesting possibility of introducing alternative test statistics to classical ones like Wald, Rao, and likelihood ratio. Each chapter concludes with exercises that clarify the theoretical results and present additional results that complement the main discussions. Clear, comprehensive, and logically developed, this book offers a unique opportunity to gain not only a new perspective on some standard statistics problems, but the tools to put it into practice.

Statistical Design Of Experiments With Engineering Applications

Author : Kamel Rekab
ISBN : 9781574446258
Genre : Mathematics
File Size : 90. 81 MB
Format : PDF, ePub
Download : 864
Read : 569

Download Now


In today's high-technology world, with flourishing e-business and intense competition at a global level, the search for the competitive advantage has become a crucial task of corporate executives. Quality, formerly considered a secondary expense, is now universally recognized as a necessary tool. Although many statistical methods are available for determining quality, there has been no guide to easy learning and implementation until now. Filling that gap, Statistical Design of Experiments with Engineering Applications, provides a ready made, quick and easy-to-learn approach for applying design of experiments techniques to problems. The book uses quality as the main theme to explain various design of experiments concepts. The authors examine the entire product lifecycle and the tools and techniques necessary to measure quality at each stage. They explain topics such as optimization, Taguchi's method, variance reduction, and graphical applications based on statistical techniques. Wherever applicable the book supplies practical rules of thumb, step-wise procedures that allow you to grasp concepts quickly and apply them appropriately, and examples that demonstrate how to apply techniques. Emphasizing the importance of quality to products and services, the authors include concepts from the field of Quality Engineering. Written with an emphasis on application and not on bogging you down with the theoretical underpinnings, the book enables you to solve 80% of design problems without worrying about the derivation of mathematical formulas.

Advanced Risk Analysis In Engineering Enterprise Systems

Author : Cesar Ariel Pinto
ISBN : 9781439826157
Genre : Business & Economics
File Size : 35. 85 MB
Format : PDF
Download : 608
Read : 1206

Download Now


Since the emerging discipline of engineering enterprise systems extends traditional systems engineering to develop webs of systems and systems-of-systems, the engineering management and management science communities need new approaches for analyzing and managing risk in engineering enterprise systems. Advanced Risk Analysis in Engineering Enterprise Systems presents innovative methods to address these needs. With a focus on engineering management, the book explains how to represent, model, and measure risk in large-scale, complex systems that are engineered to function in enterprise-wide environments. Along with an analytical framework and computational model, the authors introduce new protocols: the risk co-relationship (RCR) index and the functional dependency network analysis (FDNA) approach. These protocols capture dependency risks and risk co-relationships that may exist in an enterprise. Moving on to extreme and rare event risks, the text discusses how uncertainties in system behavior are intensified in highly networked, globally connected environments. It also describes how the risk of extreme latencies in delivering time-critical data, applications, or services can have catastrophic consequences and explains how to avoid these events. With more and more communication, transportation, and financial systems connected across domains and interfaced with an infinite number of users, information repositories, applications, and services, there has never been a greater need for analyzing risk in engineering enterprise systems. This book gives you advanced methods for tackling risk problems at the enterprise level.

Top Download:

Best Books