statistical shape analysis with applications in r wiley series in probability and statistics

Download Book Statistical Shape Analysis With Applications In R Wiley Series In Probability And Statistics in PDF format. You can Read Online Statistical Shape Analysis With Applications In R Wiley Series In Probability And Statistics here in PDF, EPUB, Mobi or Docx formats.

Statistical Shape Analysis

Author : Ian L. Dryden
ISBN : 9780470699621
Genre : Mathematics
File Size : 72. 76 MB
Format : PDF, ePub, Docs
Download : 866
Read : 445

Get This Book


Originally published as: Statistical shape analysis, 1998

Mixed Models

Author : Eugene Demidenko
ISBN : 9781118091579
Genre : Mathematics
File Size : 57. 30 MB
Format : PDF, Kindle
Download : 891
Read : 1282

Get This Book


Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models' statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. The new edition includes significant updating, over 300 exercises, stimulating chapter projects and model simulations, inclusion of R subroutines, and a revised text format. The target audience continues to be graduate students and researchers. An author-maintained web site is available with solutions to exercises and a compendium of relevant data sets.

Morphometrics With R

Author : Julien Claude
ISBN : 0387777903
Genre : Science
File Size : 67. 75 MB
Format : PDF, Docs
Download : 168
Read : 1119

Get This Book


This book aims to explain how to use R to perform morphometrics. Morpho- tric analysis is the study of shape and size variations and covariations and their covariations with other variables. Morphometrics is thus deeply rooted within stat- tical sciences. While most applications concern biology, morphometrics is becoming common tools used in archeological, palaeontological, geographical, or medicine disciplines. Since the recent formalizations of some of the ideas of predecessors, such as D’arcy Thompson, and thanks to the development of computer techno- gies and new ways for appraising shape changes and variation, morphometrics have undergone, and are still undergoing, a revolution. Most techniques dealing with s- tistical shape analysis have been developed in the last three decades, and the number of publications using morphometrics is increasing rapidly. However, the majority of these methods cannot be implemented in available software and therefore prosp- tive students often need to acquire detailed knowledge in informatics and statistics before applying them to their data. With acceleration in the accumulation of me- ods accompanying the emerging science of statistical shape analysis, it is becoming important to use tools that allow some autonomy. R easily helps ful?ll this need. Risalanguage andenvironment forstatisticalcomputingandgraphics. Although there is an increasing number of computer applications that perform morphometrics, using R has several advantages that confer to users considerable power and possible new horizons in a world that requires rapid adaptability.

Statistical Shape Analysis

Author : I. L. Dryden
ISBN : 0471958166
Genre : Mathematics
File Size : 37. 26 MB
Format : PDF, ePub, Docs
Download : 105
Read : 563

Get This Book


Statistical Shape Analysis involves methods for the geometrical study of random objects where location, rotation and scale information can be removed. The book lays the foundations of the subject discussing key ideas and the very latest developments, as well as offering practical guidance and comparisons of techniques. There is a vast range of applications of shape analysis and the authors introduce the field to statisticians and applied researchers through important examples and data analysis in Biology, Medicine and Image Analysis. The text primarily concentrates on landmark data key points of correspondence located on each object. Careful consideration of the similarity invariances requires methods appropriate for non-Euclidean data analysis. In particular, multivariate statistical procedures cannot be applied directly, but can be adapted in certain instances. The book begins with introductory material on shape, size and coordinate systems. Planar Procrustes analysis is then discussed to highlight the main components of shape analysis. The shape space and general Procrustes methods are introduced, probability distributions for shape are described and statistical inference is discussed. Some deformation methods for shape change are also given and a special chapter is devoted to shape in image analysis. Finally, various alternative procedures including landmark-free methods are critically discussed and compared. Definitions and important results are highlighted throughout to assist the reader in learning about this new, exciting and important area.

Geometry Driven Statistics

Author : Ian L. Dryden
ISBN : 9781118866573
Genre : Mathematics
File Size : 58. 79 MB
Format : PDF, Docs
Download : 993
Read : 966

Get This Book


A timely collection of advanced, original material in the area of statistical methodology motivated by geometric problems, dedicated to the influential work of Kanti V. Mardia This volume celebrates Kanti V. Mardia′s long and influential career in statistics. A common theme unifying much of Mardia s work is the importance of geometry in statistics, and to highlight the areas emphasized in his research this book brings together 16 contributions from high–profile researchers in the field. Geometry Driven Statistics covers a wide range of application areas including directional data, shape analysis, spatial data, climate science, fingerprints, image analysis, computer vision and bioinformatics. The book will appeal to statisticians and others with an interest in data motivated by geometric considerations. Summarizing the state of the art, examining some new developments and presenting a vision for the future, Geometry Driven Statistics will enable the reader to broaden knowledge of important research areas in statistics and gain a new appreciation of the work and influence of Kanti V. Mardia.

Functional And Shape Data Analysis

Author : Anuj Srivastava
ISBN : 9781493940202
Genre : Mathematics
File Size : 57. 70 MB
Format : PDF, Kindle
Download : 177
Read : 540

Get This Book


This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves—in one, two, and higher dimensions—both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.

Statistics And Data With R

Author : Yosef Cohen
ISBN : 9780470721889
Genre : Mathematics
File Size : 73. 41 MB
Format : PDF, ePub, Mobi
Download : 583
Read : 1311

Get This Book


R, an Open Source software, has become the de facto statistical computing environment. It has an excellent collection of data manipulation and graphics capabilities. It is extensible and comes with a large number of packages that allow statistical analysis at all levels – from simple to advanced – and in numerous fields including Medicine, Genetics, Biology, Environmental Sciences, Geology, Social Sciences and much more. The software is maintained and developed by academicians and professionals and as such, is continuously evolving and up to date. Statistics and Data with R presents an accessible guide to data manipulations, statistical analysis and graphics using R. Assuming no previous knowledge of statistics or R, the book includes: A comprehensive introduction to the R language. An integrated approach to importing and preparing data for analysis, exploring and analyzing the data, and presenting results. Over 300 examples, including detailed explanations of the R scripts used throughout. Over 100 moderately large data sets from disciplines ranging from Biology, Ecology and Environmental Science to Medicine, Law, Military and Social Sciences. A parallel discussion of analyses with the normal density, proportions (binomial), counts (Poisson) and bootstrap methods. Two extensive indexes that include references to every R function (and its arguments and packages used in the book) and to every introduced concept. An accompanying Wiki website, http://turtle.gis.umn.edu includes all the scripts and data used in the book. The website also features a solutions manual, providing answers to all of the exercises presented in the book. Visitors are invited to download/upload data and scripts and share comments, suggestions and questions with other visitors. Students, researchers and practitioners will find this to be both a valuable learning resource in statistics and R and an excellent reference book.

Introduction To Functional Data Analysis

Author : Piotr Kokoszka
ISBN : 9781498746694
Genre : Mathematics
File Size : 59. 59 MB
Format : PDF, Docs
Download : 803
Read : 584

Get This Book


Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.

The R Book

Author : Michael J. Crawley
ISBN : 9781118448960
Genre : Mathematics
File Size : 56. 82 MB
Format : PDF, ePub, Docs
Download : 824
Read : 410

Get This Book


Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

An Introduction To Statistical Analysis In Research

Author : Kathleen F. Weaver
ISBN : 9781119301103
Genre : Mathematics
File Size : 74. 17 MB
Format : PDF
Download : 225
Read : 339

Get This Book


Provides well-organized coverage of statistical analysis and applications in biology, kinesiology, and physical anthropology with comprehensive insights into the techniques and interpretations of R, SPSS®, Excel®, and Numbers® output An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences develops a conceptual foundation in statistical analysis while providing readers with opportunities to practice these skills via research-based data sets in biology, kinesiology, and physical anthropology. Readers are provided with a detailed introduction and orientation to statistical analysis as well as practical examples to ensure a thorough understanding of the concepts and methodology. In addition, the book addresses not just the statistical concepts researchers should be familiar with, but also demonstrates their relevance to real-world research questions and how to perform them using easily available software packages including R, SPSS®, Excel®, and Numbers®. Specific emphasis is on the practical application of statistics in the biological and life sciences, while enhancing reader skills in identifying the research questions and testable hypotheses, determining the appropriate experimental methodology and statistical analyses, processing data, and reporting the research outcomes. In addition, this book: • Aims to develop readers’ skills including how to report research outcomes, determine the appropriate experimental methodology and statistical analysis, and identify the needed research questions and testable hypotheses • Includes pedagogical elements throughout that enhance the overall learning experience including case studies and tutorials, all in an effort to gain full comprehension of designing an experiment, considering biases and uncontrolled variables, analyzing data, and applying the appropriate statistical application with valid justification • Fills the gap between theoretically driven, mathematically heavy texts and introductory, step-by-step type books while preparing readers with the programming skills needed to carry out basic statistical tests, build support figures, and interpret the results • Provides a companion website that features related R, SPSS, Excel, and Numbers data sets, sample PowerPoint® lecture slides, end of the chapter review questions, software video tutorials that highlight basic statistical concepts, and a student workbook and instructor manual An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences is an ideal textbook for upper-undergraduate and graduate-level courses in research methods, biostatistics, statistics, biology, kinesiology, sports science and medicine, health and physical education, medicine, and nutrition. The book is also appropriate as a reference for researchers and professionals in the fields of anthropology, sports research, sports science, and physical education. KATHLEEN F. WEAVER, PhD, is Associate Dean of Learning, Innovation, and Teaching and Professor in the Department of Biology at the University of La Verne. The author of numerous journal articles, she received her PhD in Ecology and Evolutionary Biology from the University of Colorado. VANESSA C. MORALES, BS, is Assistant Director of the Academic Success Center at the University of La Verne. SARAH L. DUNN, PhD, is Associate Professor in the Department of Kinesiology at the University of La Verne and is Director of Research and Sponsored Programs. She has authored numerous journal articles and received her PhD in Health and Exercise Science from the University of New South Wales. KANYA GODDE, PhD, is Assistant Professor in the Department of Anthropology and is Director/Chair of Institutional Review Board at the University of La Verne. The author of numerous journal articles and a member of the American Statistical Association, she received her PhD in Anthropology from the University of Tennessee. PABLO F. WEAVER, PhD, is Instructor in the Department of Biology at the University of La Verne. The author of numerous journal articles, he received his PhD in Ecology and Evolutionary Biology from the University of Colorado.

Top Download:

Best Books