stochastic simulation algorithms and analysis 57 stochastic modelling and applied probability

Download Book Stochastic Simulation Algorithms And Analysis 57 Stochastic Modelling And Applied Probability in PDF format. You can Read Online Stochastic Simulation Algorithms And Analysis 57 Stochastic Modelling And Applied Probability here in PDF, EPUB, Mobi or Docx formats.

Stochastic Simulation Algorithms And Analysis

Author : Søren Asmussen
ISBN : 9780387690339
Genre : Mathematics
File Size : 73. 52 MB
Format : PDF, ePub
Download : 155
Read : 1247

Get This Book


Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods; the second half discusses model-specific algorithms. Exercises and illustrations are included.

Stochastic Simulation And Monte Carlo Methods

Author : Carl Graham
ISBN : 9783642393631
Genre : Mathematics
File Size : 58. 66 MB
Format : PDF, ePub, Mobi
Download : 391
Read : 1217

Get This Book


In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.

Markov Chains And Stochastic Stability

Author : Sean Meyn
ISBN : 9780521731829
Genre : Mathematics
File Size : 30. 5 MB
Format : PDF, ePub, Mobi
Download : 816
Read : 475

Get This Book


New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.

An Introduction To Computational Stochastic Pdes

Author : Gabriel J. Lord
ISBN : 9781139915779
Genre : Mathematics
File Size : 62. 66 MB
Format : PDF, ePub, Docs
Download : 218
Read : 1284

Get This Book


This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.

Stochastische Simulation

Author : Michael Kolonko
ISBN : 9783834892904
Genre : Mathematics
File Size : 61. 5 MB
Format : PDF, Mobi
Download : 677
Read : 1307

Get This Book


Zufällige Einflussfaktoren sind oft wesentliche Bestandteile moderner mathematischer Modelle für ökonomische und technische Fragestellungen. Die stochastische Simulation stellt eine experimentelle Variante zur Lösung solcher Probleme dar. Das Buch behandelt die Erzeugung von "Zufall" auf dem Rechner. Es werden die mathematischen Grundlagen und die wichtigsten Algorithmen zur Erzeugung von Zufallszahlen vorgestellt und die Güte dieser Verfahren untersucht. Aufbau und Auswertung von Simulationsexperimenten werden unter mathematischen und programmiertechnischen Gesichtspunkten erläutert. Die Bedeutung dieser Resultate für die Praxis wird anhand eines ausführlichen Anwendungsszenarios aus dem Verkehrsbereich diskutiert.

Wahrscheinlichkeitstheorie Und Stochastische Prozesse

Author : Michael Mürmann
ISBN : 9783642381607
Genre : Mathematics
File Size : 62. 31 MB
Format : PDF, Kindle
Download : 160
Read : 936

Get This Book


Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Mathematische Statistik

Author : Bartel L. van der Waerden
ISBN : 9783642649745
Genre : Mathematics
File Size : 64. 77 MB
Format : PDF, ePub, Mobi
Download : 611
Read : 150

Get This Book



Recent Advances In Applied Probability

Author : Ricardo Baeza-Yates
ISBN : 0387233784
Genre : Business & Economics
File Size : 71. 6 MB
Format : PDF, Docs
Download : 251
Read : 583

Get This Book


Applied probability is a broad research area that is of interest to scientists in diverse disciplines in science and technology, including: anthropology, biology, communication theory, economics, epidemiology, finance, geography, linguistics, medicine, meteorology, operations research, psychology, quality control, sociology, and statistics. Recent Advances in Applied Probability is a collection of survey articles that bring together the work of leading researchers in applied probability to present current research advances in this important area. This volume will be of interest to graduate students and researchers whose research is closely connected to probability modelling and their applications. It is suitable for one semester graduate level research seminar in applied probability.

Operations Research

Author : Frederick S. Hillier
ISBN : 9783486792089
Genre : Business & Economics
File Size : 37. 23 MB
Format : PDF, Mobi
Download : 297
Read : 1119

Get This Book


Aus dem Inhalt: Was ist Operations Research? Überblick über die Modellierungsgrundsätze des Operations Research. Einführung in die lineare Programmierung. Die Lösung linearer Programmierungsprobleme: Das Simplexverfahren. Stochastische Prozesse. Warteschlangentheorie. Lagerhaltungstheorie. Prognoseverfahren. Markov-Entscheidungsprozesse. Reliabilität. Entscheidungstheorie. Die Theorie des Simplexverfahrens Qualitätstheorie und Sensitivitätsanalyse Spezialfälle linearer Programmierungsprobleme. Die Formulierung linearer Programmierungsmodelle und Goal-Programmierung. Weitere Algorithmen der linearen Programmierung. Netzwerkanalyse einschließlich PERT-CPM. Dynamische Optimierung. Spieltheorie. Ganzzahlige Programmierung. Nichtlineare Programmierung Simulation. Anhang. Lösungen für ausgewählte Übungsaufgaben.

Markov Chain Monte Carlo

Author : Dani Gamerman
ISBN : 1584885874
Genre : Mathematics
File Size : 42. 3 MB
Format : PDF, ePub, Mobi
Download : 912
Read : 903

Get This Book


While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration. Major changes from the previous edition: · More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms · Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection · Discussion of computation using both R and WinBUGS · Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web · Sections on spatial models and model adequacy The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses.

Top Download:

Best Books