# the arithmetic of dynamical systems graduate texts in mathematics

**Download Book The Arithmetic Of Dynamical Systems Graduate Texts In Mathematics in PDF format. You can Read Online The Arithmetic Of Dynamical Systems Graduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## The Arithmetic Of Dynamical Systems

**Author :**J.H. Silverman

**ISBN :**9780387699042

**Genre :**Mathematics

**File Size :**67. 46 MB

**Format :**PDF

**Download :**759

**Read :**970

This book provides an introduction to the relatively new discipline of arithmetic dynamics. Whereas classical discrete dynamics is the study of iteration of self-maps of the complex plane or real line, arithmetic dynamics is the study of the number-theoretic properties of rational and algebraic points under repeated application of a polynomial or rational function. A principal theme of arithmetic dynamics is that many of the fundamental problems in the theory of Diophantine equations have dynamical analogs.This graduate-level text provides an entry for students into an active field of research and serves as a standard reference for researchers.

## Advanced Topics In The Arithmetic Of Elliptic Curves

**Author :**Joseph H. Silverman

**ISBN :**9781461208518

**Genre :**Mathematics

**File Size :**89. 80 MB

**Format :**PDF

**Download :**410

**Read :**1165

In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.

## Diophantine Geometry

**Author :**Marc Hindry

**ISBN :**9781461212102

**Genre :**Mathematics

**File Size :**63. 78 MB

**Format :**PDF, ePub, Mobi

**Download :**621

**Read :**807

This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

## The Arithmetic Of Elliptic Curves

**Author :**Joseph H. Silverman

**ISBN :**0387094946

**Genre :**Mathematics

**File Size :**69. 52 MB

**Format :**PDF, ePub

**Download :**975

**Read :**1330

The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

## Introduction To Dynamics

**Author :**I. C. Percival

**ISBN :**0521281490

**Genre :**Mathematics

**File Size :**65. 46 MB

**Format :**PDF, Docs

**Download :**631

**Read :**913

A new approach to dynamics that takes account of recent advances that have wide applications in the sciences and engineering. It introduces the subject at an undergraduate level by means of elementary qualitative theory of differential equations, the geometry of phase curves, and the theory of stability.

## Ergodic Theory Dynamical Systems And The Continuing Influence Of John C Oxtoby

**Author :**Joseph Auslander

**ISBN :**9781470422998

**Genre :**Dynamical systems and ergodic theory -- Arithmetic and non-Archimedean dynamical systems -- Non-Archimedean Fatou and Julia sets

**File Size :**20. 53 MB

**Format :**PDF, Kindle

**Download :**618

**Read :**864

This volume contains the proceedings of three conferences in Ergodic Theory and Symbolic Dynamics: the Oxtoby Centennial Conference, held from October 30–31, 2010, at Bryn Mawr College; the Williams Ergodic Theory Conference, held from July 27–29, 2012, at Williams College; and the AMS Special Session on Ergodic Theory and Symbolic Dynamics, held from January 17–18, 2014, in Baltimore, MD. This volume contains articles covering a variety of topics in measurable, symbolic and complex dynamics. It also includes a survey article on the life and work of John Oxtoby, providing a source of information about the many ways Oxtoby's work influenced mathematical thought in this and other fields.

## Operator Theoretic Aspects Of Ergodic Theory

**Author :**Tanja Eisner

**ISBN :**9783319168982

**Genre :**Mathematics

**File Size :**86. 23 MB

**Format :**PDF, ePub, Mobi

**Download :**310

**Read :**484

Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory

## Dynamical Systems Number Theory And Applications

**Author :**Thomas Hagen

**ISBN :**9789814699884

**Genre :**Mathematics

**File Size :**39. 39 MB

**Format :**PDF, Docs

**Download :**744

**Read :**356

This volume consists of a selection of research-type articles on dynamical systems, evolution equations, analytic number theory and closely related topics. A strong emphasis is on a fair balance between theoretical and more applied work, thus spanning the chasm between abstract insight and actual application. Several of the articles are expected to be in the intersection of dynamical systems theory and number theory. One article will likely relate the topics presented to the academic achievements and interests of Prof. Leutbecher and shed light on common threads among all the contributions. Contents:PrefaceBiographical Note on Armin Leutbecher (S Walcher)Das Jahr 1934 ... (J Fischer)Explicit Expressions for Equivariant Minimal Lagrangian Surfaces (J F Dorfmeister & H Ma)Rational Parameter Rays of the Multibrot Sets (D Eberlein, S Mukherjee & D Schleicher)The Matovich-Pearson Equations Revisited (T Hagen)Diffeomorphisms with Stable Manifolds as Basin Boundaries (S Hayes & Ch Wolf)A New Type of Functional Equations of Euler Products (B Heim)The Hexagonal Lattice and the Epstein Zeta Function (A Henn)On Putative q-Analogues of the Fano Plane (Th Honold & M Kiermaier)Integral Orthogonal Groups (A Krieg)The Role of Fourier Analysis in X-Ray Crystallography (F Rupp & J Scheurle)An Elementary Proof for Joint Continuity of Semiflows (S Schmitz)A Convergent String Method (H Schwetlick & J Zimmer)Variational Symmetries and Pluri-Lagrangian Systems (Y B Suris) Readership: Researchers in algebra and number theory, dynamical systems and analysis and differential equations. Key Features:This versatile book covers state-of-the art work in dynamical systems, analytic number theory and applied analysisIt appeals to a wide audience due to its broad range of topics, highlighting both the breadth and the depth of modern analytical work without losing sight of a common coreKeywords:Dynamical Systems;Evolution Equations;Number Theory;Differential Geometry

## Ergodic Theory

**Author :**Manfred Einsiedler

**ISBN :**0857290215

**Genre :**Mathematics

**File Size :**68. 91 MB

**Format :**PDF, Kindle

**Download :**418

**Read :**857

This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

## Dynamical Systems And Ergodic Theory

**Author :**Mark Pollicott

**ISBN :**0521575990

**Genre :**Mathematics

**File Size :**61. 4 MB

**Format :**PDF

**Download :**943

**Read :**306

This book is essentially a self-contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a master's level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der Waerden's theorem and Szemerdi's theorem).