# the mathematics of logic a guide to completeness theorems and their applications

**Download Book The Mathematics Of Logic A Guide To Completeness Theorems And Their Applications in PDF format. You can Read Online The Mathematics Of Logic A Guide To Completeness Theorems And Their Applications here in PDF, EPUB, Mobi or Docx formats.**

## The Mathematics Of Logic

**Author :**Richard W. Kaye

**ISBN :**9781139467216

**Genre :**Mathematics

**File Size :**47. 32 MB

**Format :**PDF, Kindle

**Download :**335

**Read :**1034

This undergraduate textbook covers the key material for a typical first course in logic, in particular presenting a full mathematical account of the most important result in logic, the Completeness Theorem for first-order logic. Looking at a series of interesting systems, increasing in complexity, then proving and discussing the Completeness Theorem for each, the author ensures that the number of new concepts to be absorbed at each stage is manageable, whilst providing lively mathematical applications throughout. Unfamiliar terminology is kept to a minimum, no background in formal set-theory is required, and the book contains proofs of all the required set theoretical results. The reader is taken on a journey starting with König's Lemma, and progressing via order relations, Zorn's Lemma, Boolean algebras, and propositional logic, to completeness and compactness of first-order logic. As applications of the work on first-order logic, two final chapters provide introductions to model theory and nonstandard analysis.

## The Bulletin Of Symbolic Logic

**Author :**

**ISBN :**UVA:X030757332

**Genre :**Logic, Symbolic and mathematical

**File Size :**38. 74 MB

**Format :**PDF, Mobi

**Download :**885

**Read :**689

## A Guide To The Literature On Semirings And Their Applications In Mathematics And Information Sciences

**Author :**K. Glazek

**ISBN :**9789401599641

**Genre :**Mathematics

**File Size :**77. 7 MB

**Format :**PDF, ePub, Docs

**Download :**507

**Read :**1054

This volume presents a short guide to the extensive literature concerning semir ings along with a complete bibliography. The literature has been created over many years, in variety of languages, by authors representing different schools of mathematics and working in various related fields. In many instances the terminology used is not universal, which further compounds the difficulty of locating pertinent sources even in this age of the Internet and electronic dis semination of research results. So far there has been no single reference that could guide the interested scholar or student to the relevant publications. This book is an attempt to fill this gap. My interest in the theory of semirings began in the early sixties, when to gether with Bogdan W ~glorz I tried to investigate some algebraic aspects of compactifications of topological spaces, semirings of semicontinuous functions, and the general ideal theory for special semirings. (Unfortunately, local alge braists in Poland told me at that time that there was nothing interesting in investigating semiring theory because ring theory was still being developed). However, some time later we became aware of some similar investigations hav ing already been done. The theory of semirings has remained "my first love" ever since, and I have been interested in the results in this field that have been appearing in literature (even though I have not been active in this area myself).

## Logic For Applications

**Author :**Anil Nerode

**ISBN :**0387948937

**Genre :**Computers

**File Size :**79. 92 MB

**Format :**PDF, ePub, Docs

**Download :**895

**Read :**1259

In writing this book, our goal was to produce a text suitable for a first course in mathematical logic more attuned than the traditional textbooks to the re cent dramatic growth in the applications oflogic to computer science. Thus, our choice oftopics has been heavily influenced by such applications. Of course, we cover the basic traditional topics: syntax, semantics, soundnes5, completeness and compactness as well as a few more advanced results such as the theorems of Skolem-Lowenheim and Herbrand. Much ofour book, however, deals with other less traditional topics. Resolution theorem proving plays a major role in our treatment of logic especially in its application to Logic Programming and PRO LOG. We deal extensively with the mathematical foundations ofall three ofthese subjects. In addition, we include two chapters on nonclassical logics - modal and intuitionistic - that are becoming increasingly important in computer sci ence. We develop the basic material on the syntax and semantics (via Kripke frames) for each of these logics. In both cases, our approach to formal proofs, soundness and completeness uses modifications of the same tableau method in troduced for classical logic. We indicate how it can easily be adapted to various other special types of modal logics. A number of more advanced topics (includ ing nonmonotonic logic) are also briefly introduced both in the nonclassical logic chapters and in the material on Logic Programming and PROLOG.

## Mathematical Logic

**Author :**George Tourlakis

**ISBN :**9781118030691

**Genre :**Mathematics

**File Size :**45. 23 MB

**Format :**PDF, ePub

**Download :**778

**Read :**350

A comprehensive and user-friendly guide to the use of logic inmathematical reasoning Mathematical Logic presents a comprehensive introductionto formal methods of logic and their use as a reliable tool fordeductive reasoning. With its user-friendly approach, this booksuccessfully equips readers with the key concepts and methods forformulating valid mathematical arguments that can be used touncover truths across diverse areas of study such as mathematics,computer science, and philosophy. The book develops the logical tools for writing proofs byguiding readers through both the established "Hilbert" style ofproof writing, as well as the "equational" style that is emergingin computer science and engineering applications. Chapters havebeen organized into the two topical areas of Boolean logic andpredicate logic. Techniques situated outside formal logic areapplied to illustrate and demonstrate significant facts regardingthe power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems ofPost and Gödel). Logic cannot certify all "conditional" truths, such as thosethat are specific to the Peano arithmetic. Therefore, logic hassome serious limitations, as shown through Gödel'sincompleteness theorem. Numerous examples and problem sets are provided throughout thetext, further facilitating readers' understanding of thecapabilities of logic to discover mathematical truths. In addition,an extensive appendix introduces Tarski semantics and proceeds withdetailed proofs of completeness and first incompleteness theorems,while also providing a self-contained introduction to the theory ofcomputability. With its thorough scope of coverage and accessible style,Mathematical Logic is an ideal book for courses inmathematics, computer science, and philosophy at theupper-undergraduate and graduate levels. It is also a valuablereference for researchers and practitioners who wish to learn howto use logic in their everyday work.

## Non Classical Logics And Their Applications To Fuzzy Subsets

**Author :**Ulrich Höhle

**ISBN :**9789401102155

**Genre :**Mathematics

**File Size :**69. 44 MB

**Format :**PDF, ePub, Docs

**Download :**548

**Read :**830

Non-Classical Logics and their Applications to Fuzzy Subsets is the first major work devoted to a careful study of various relations between non-classical logics and fuzzy sets. This volume is indispensable for all those who are interested in a deeper understanding of the mathematical foundations of fuzzy set theory, particularly in intuitionistic logic, Lukasiewicz logic, monoidal logic, fuzzy logic and topos-like categories. The tutorial nature of the longer chapters, the comprehensive bibliography and index make it suitable as a valuable and important reference for graduate students as well as research workers in the field of non-classical logics. The book is arranged in three parts: Part A presents the most recent developments in the theory of Heyting algebras, MV-algebras, quantales and GL-monoids. Part B gives a coherent and current account of topos-like categories for fuzzy set theory based on Heyting algebra valued sets, quantal sets of M-valued sets. Part C addresses general aspects of non-classical logics including epistemological problems as well as recursive properties of fuzzy logic.

## Mathematical Reviews

**Author :**

**ISBN :**UOM:39015082440887

**Genre :**Mathematics

**File Size :**64. 31 MB

**Format :**PDF

**Download :**691

**Read :**385

## Handbook Of Mathematical Logic

**Author :**J. Barwise

**ISBN :**0080933645

**Genre :**Mathematics

**File Size :**25. 35 MB

**Format :**PDF, Kindle

**Download :**216

**Read :**1171

The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.

## A Beginner S Further Guide To Mathematical Logic

**Author :**Raymond Smullyan

**ISBN :**9789814733014

**Genre :**

**File Size :**39. 30 MB

**Format :**PDF, ePub, Docs

**Download :**477

**Read :**1222

This is the final book written by the late great puzzle master and logician, Dr. Raymond Smullyan. This book is a sequel to my Beginner's Guide to Mathematical Logic. The previous volume deals with elements of propositional and first-order logic, contains a bit on formal systems and recursion, and concludes with chapters on Gödel's famous incompleteness theorem, along with related results. The present volume begins with a bit more on propositional and first-order logic, followed by what I would call a "fein" chapter, which simultaneously generalizes some results from recursion theory, first-order arithmetic systems, and what I dub a "decision machine." Then come five chapters on formal systems, recursion theory and metamathematical applications in a general setting. The concluding five chapters are on the beautiful subject of combinatory logic, which is not only intriguing in its own right, but has important applications to computer science. Argonne National Laboratory is especially involved in these applications, and I am proud to say that its members have found use for some of my results in combinatory logic. This book does not cover such important subjects as set theory, model theory, proof theory, and modern developments in recursion theory, but the reader, after studying this volume, will be amply prepared for the study of these more advanced topics. Request Inspection Copy

## Handbook Of Logic And Proof Techniques For Computer Science

**Author :**Steven G. Krantz

**ISBN :**081764220X

**Genre :**Computers

**File Size :**55. 99 MB

**Format :**PDF, Kindle

**Download :**701

**Read :**368

Logic plays a central conceptual role in modern mathematics. However, mathematical logic has grown into one of the most recondite areas of mathematics. As a result, most of modern logic is inaccessible to all but the specialist. This new book is a resource that provides a quick introduction and review of the key topics in logic for the computer scientist, engineer, or mathematician.Handbook of Logic and Proof Techniques for Computer Science presents the elements of modern logic, including many current topics, to the reader having only basic mathematical literacy. Computer scientists will find specific examples and important ideas such as axiomatics, recursion theory, decidability, independence, completeness, consistency, model theory, and P/NP completeness. The book contains definitions, examples and discussion of all of the key ideas in basic logic, but also makes a special effort to cut through the mathematical formalism, difficult notation, and esoteric terminology that is typical of modern mathematical logic. TThis handbook delivers cogent and self-contained introductions to critical advanced topics, including:* Godel`s completeness and incompleteness theorems* Methods of proof, cardinal and ordinal numbers, the continuum hypothesis, the axiom of choice, model theory, and number systems and their construction* Extensive treatment of complexity theory and programming applications* Applications to algorithms in Boolean algebra* Discussion of set theory and applications of logicThe book is an excellent resource for the working mathematical scientist. The graduate student or professional in computer science and engineering or the systems scientist who needs to have a quick sketch of a key idea from logic will find it here in this self-contained, accessible, and easy-to-use reference.