thermodynamics of information processing in small systems springer theses

Download Book Thermodynamics Of Information Processing In Small Systems Springer Theses in PDF format. You can Read Online Thermodynamics Of Information Processing In Small Systems Springer Theses here in PDF, EPUB, Mobi or Docx formats.

Thermodynamics Of Information Processing In Small Systems

Author : Takahiro Sagawa
ISBN : 9784431541684
Genre : Science
File Size : 76. 39 MB
Format : PDF, Mobi
Download : 249
Read : 512

Download Now

This thesis presents a general theory of nonequilibrium thermodynamics for information processing. Ever since Maxwell's demon was proposed in the nineteenth century, the relationship between thermodynamics and information has attracted much attention because it concerns the foundation of the second law of thermodynamics. From the modern point of view, Maxwell's demon is formulated as an information processing device that performs measurement and feedback at the level of thermal fluctuations. By unifying information theory, measurement theory, and the recently developed theory of nonequilibrium statistical mechanics, the author has constructed a theory of "information thermodynamics," in which information contents and thermodynamic variables are treated on an equal footing. In particular, the maximum work that can be extracted by the demon and the minimum work that is needed for measurement and information erasure by the demon has been determined. Additionally, generalizations of nonequilibrium relations such as a Jarzynski equality for classical stochastic systems in the presence of feedback control have been derived. One of the generalized equalities has recently been verified experimentally by using sub-micron colloidal particles. The results obtained serve as fundamental principles for information processing in small thermodynamic systems, and are applicable to nanomachines and nanodevices.

Experiments On The Thermodynamics Of Information Processing

Author : Momčilo Gavrilov
ISBN : 9783319636948
Genre : Science
File Size : 84. 64 MB
Format : PDF
Download : 451
Read : 765

Download Now

This thesis reveals how the feedback trap technique, developed to trap small objects for biophysical measurement, could be adapted for the quantitative study of the thermodynamic properties of small systems. The experiments in this thesis are related to Maxwell’s demon, a hypothetical intelligent, “neat fingered” being that uses information to extract work from heat, apparently creating a perpetual-motion machine. The second law of thermodynamics should make that impossible, but how? That question has stymied physicists and provoked debate for a century and a half. The experiments in this thesis confirm a hypothesis proposed by Rolf Landauer over fifty years ago: that Maxwell’s demon would need to erase information, and that erasing information—resetting the measuring device to a standard starting state—requires dissipating as much energy as is gained. For his thesis work, the author used a “feedback trap” to study the motion of colloidal particles in “virtual potentials” that may be manipulated arbitrarily. The feedback trap confines a freely diffusing particle in liquid by periodically measuring its position and applying an electric field to move it back to the origin.

Information Thermodynamics On Causal Networks And Its Application To Biochemical Signal Transduction

Author : Sosuke Ito
ISBN : 9789811016646
Genre : Science
File Size : 54. 44 MB
Format : PDF, ePub, Mobi
Download : 303
Read : 1080

Download Now

In this book the author presents a general formalism of nonequilibrium thermodynamics with complex information flows induced by interactions among multiple fluctuating systems. The author has generalized stochastic thermodynamics with information by using a graphical theory. Characterizing nonequilibrium dynamics by causal networks, he has obtained a novel generalization of the second law of thermodynamics with information that is applicable to quite a broad class of stochastic dynamics such as information transfer between multiple Brownian particles, an autonomous biochemical reaction, and complex dynamics with a time-delayed feedback control. This study can produce further progress in the study of Maxwell’s demon for special cases. As an application to these results, information transmission and thermodynamic dissipation in biochemical signal transduction are discussed. The findings presented here can open up a novel biophysical approach to understanding information processing in living systems.

Challenges To The Second Law Of Thermodynamics

Author : Vladislav Capek
ISBN : 9781402030161
Genre : Science
File Size : 37. 88 MB
Format : PDF, ePub
Download : 803
Read : 197

Download Now

The advance of scienti?c thought in ways resembles biological and geologic transformation: long periods of gradual change punctuated by episodes of radical upheaval. Twentieth century physics witnessed at least three major shifts — relativity, quantum mechanics and chaos theory — as well many lesser ones. Now, st early in the 21 , another shift appears imminent, this one involving the second law of thermodynamics. Over the last 20 years the absolute status of the second law has come under increased scrutiny, more than during any other period its 180-year history. Since the early 1980’s, roughly 50 papers representing over 20 challenges have appeared in the refereed scienti?c literature. In July 2002, the ?rst conference on its status was convened at the University of San Diego, attended by 120 researchers from 25 countries (QLSL2002) [1]. In 2003, the second edition of Le?’s and Rex’s classic anthology on Maxwell demons appeared [2], further raising interest in this emerging ?eld. In 2004, the mainstream scienti?c journal Entropy published a special edition devoted to second law challenges [3]. And, in July 2004, an echo of QLSL2002 was held in Prague, Czech Republic [4]. Modern second law challenges began in the early 1980’s with the theoretical proposals of Gordon and Denur. Starting in the mid-1990’s, several proposals for experimentally testable challenges were advanced by Sheehan, et al. By the late 1990’s and early 2000’s, a rapid succession of theoretical quantum mechanical ? challenges were being advanced by C ́ apek, et al.

Quantum Thermodynamic Processes

Author : Guenter Mahler
ISBN : 9789814463744
Genre : Science
File Size : 85. 57 MB
Format : PDF
Download : 624
Read : 963

Download Now

The point of departure of this book is a triad of themes: information theory, thermodynamics, and quantum mechanics. These are related: thermodynamics and quantum mechanics form the basis of quantum thermodynamics; information and quantum mechanics underly, inter alia, the notorious quantum measurement problem; and information and thermodynamics have much to say about control limits in the tension between micro- and macro-descriptions. Why does the world around us typically look thermal—from cosmology down to individual embedded spins? Do informational measures constitute additional (independent) parameters beyond physical ones? Is the transition between mechanical and thermal systems gradual or discontinuous? Pertinent examples can be found in various processes implemented on small quantum systems. Particularly attractive are model systems that can be treated thermodynamically, but—to some extent—also exactly, that is, based on pure quantum dynamics. This possibility opens the door to nano-thermodynamics. In this sense, the book aims at a modern perspective of nanoscale applications, defined here as a potential realization of various functions as constrained by given resources.

A Short Course In Quantum Information Theory

Author : Lajos Diosi
ISBN : 9783642161179
Genre : Computers
File Size : 41. 84 MB
Format : PDF, ePub, Mobi
Download : 709
Read : 1277

Download Now

This short and concise primer takes the vantage point of theoretical physics and the unity of physics. It sets out to strip the burgeoning field of quantum information science to its basics by linking it to universal concepts in physics. An extensive lecture rather than a comprehensive textbook, this volume is based on courses delivered over several years to advanced undergraduate and beginning graduate students, but essentially it addresses anyone with a working knowledge of basic quantum physics. Readers will find these lectures a most adequate entry point for theoretical studies in this field. For the second edition, the authors has succeeded in adding many new topics while sticking to the conciseness of the overall approach. A new chapter on qubit thermodynamics has been added, while new sections and subsections have been incorporated in various chapter to deal with weak and time-continuous measurements, period-finding quantum algorithms and quantum error corrections. From the reviews of the first edition: "The best things about this book are its brevity and clarity. In around 100 pages it provides a tutorial introduction to quantum information theory, including problems and solutions. ... it’s worth a look if you want to quickly get up to speed with the language and central concepts of quantum information theory, including the background classical information theory." (Craig Savage, Australian Physics, Vol. 44 (2), 2007)

Mathematical Foundations And Applications Of Graph Entropy

Author : Matthias Dehmer
ISBN : 9783527339099
Genre : Medical
File Size : 64. 38 MB
Format : PDF
Download : 258
Read : 250

Download Now

This latest addition to the successful Network Biology series presents current methods for determining the entropy of networks, making it the first to cover the recently established Quantitative Graph Theory. An excellent international team of editors and contributors provides an up-to-date outlook for the field, covering a broad range of graph entropy-related concepts and methods. The topics range from analyzing mathematical properties of methods right up to applying them in real-life areas. Filling a gap in the contemporary literature this is an invaluable reference for a number of disciplines, including mathematicians, computer scientists, computational biologists, and structural chemists.

Quantum Processes Systems And Information

Author : Benjamin Schumacher
ISBN : 9781139487207
Genre : Science
File Size : 39. 22 MB
Format : PDF, Mobi
Download : 861
Read : 920

Download Now

A new and exciting approach to the basics of quantum theory, this undergraduate textbook contains extensive discussions of conceptual puzzles and over 800 exercises and problems. Beginning with three elementary 'qubit' systems, the book develops the formalism of quantum theory, addresses questions of measurement and distinguishability, and explores the dynamics of quantum systems. In addition to the standard topics covered in other textbooks, it also covers communication and measurement, quantum entanglement, entropy and thermodynamics, and quantum information processing. This textbook gives a broad view of quantum theory by emphasizing dynamical evolution, and exploring conceptual and foundational issues. It focuses on contemporary topics, including measurement, time evolution, open systems, quantum entanglement, and the role of information.

Thermodynamics Of Natural Systems

Author : Greg Anderson
ISBN : 9781107175211
Genre : Science
File Size : 87. 59 MB
Format : PDF
Download : 832
Read : 991

Download Now

Thermodynamics deals with energy levels and energy transfers between states of matter, and is therefore fundamental to all branches of science. This new edition provides an accessible introduction to the subject, specifically tailored to the interests of Earth and environmental science students. Beginning at an elementary level, the first four chapters explain all necessary concepts via a simple graphical approach. Throughout the rest of the book, the author emphasizes the importance of field observations and demonstrates that, despite being derived from idealized circumstances, thermodynamics is crucial to understanding ore formation, acid mine drainage, and other real-world geochemical and geophysical problems. Exercises now follow each chapter, with answers provided at the end of the book. An associated website includes extra chapters and password-protected answers to additional problems. This textbook is ideal for undergraduate and graduate students studying geochemistry and environmental science.

Imaging Brain Function With Eeg

Author : Walter Freeman
ISBN : 9781461449843
Genre : Medical
File Size : 76. 5 MB
Format : PDF
Download : 407
Read : 271

Download Now

The scalp and cortex lie like pages of an open book on which the cortex enciphers vast quantities of information and knowledge. They are recorded and analyzed as temporal and spatial patterns in the electroencephalogram and electrocorticogram. This book describes basic tools and concepts needed to measure and decipher the patterns extracted from the EEG and ECoG. This book emphasizes the need for single trial analysis using new methods and paradigms, as well as large, high-density spatial arrays of electrodes for pattern sampling. The deciphered patterns reveal neural mechanisms by which brains process sensory information into precepts and concepts. It describes the brain as a thermodynamic system that uses chemical energy to construct knowledge. The results are intended for use in the search for the neural correlates of intention, attention, perception and learning; in the design of human brain-computer interfaces enabling mental control of machines; and in exploring and explaining the physicochemical foundation of biological intelligence.

Top Download:

Best Books