# undergraduate convexity problems and solutions

**Download Book Undergraduate Convexity Problems And Solutions in PDF format. You can Read Online Undergraduate Convexity Problems And Solutions here in PDF, EPUB, Mobi or Docx formats.**

## Undergraduate Convexity

**Author :**Mikkel Slot Nielsen

**ISBN :**9789813143661

**Genre :**Mathematics

**File Size :**68. 34 MB

**Format :**PDF, Mobi

**Download :**303

**Read :**568

This solutions manual thoroughly goes through the exercises found in Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker. Several solutions are accompanied by detailed illustrations and intuitive explanations. This book will pave the way for students to easily grasp the multitude of solution methods and aspects of convex sets and convex functions. Companion Textbook here Request Inspection Copy

## Undergraduate Convexity

**Author :**Mikkel Slot Nielsen

**ISBN :**9813146214

**Genre :**Mathematics

**File Size :**51. 40 MB

**Format :**PDF

**Download :**609

**Read :**295

The answer book to exercises found in Undergraduate convexity: from Fourier and Motzkin to Kuhn and Tucker (Singapore; Hackensack, NJ: World Scientific, c2013).

## Undergraduate Convexity

**Author :**Niels Lauritzen

**ISBN :**9789814412537

**Genre :**Mathematics

**File Size :**47. 42 MB

**Format :**PDF, Docs

**Download :**794

**Read :**196

Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier–Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush–Kuhn–Tucker conditions, duality and an interior point algorithm. Contents:Fourier–Motzkin Elimination Affine SubspacesConvex SubsetsPolyhedraComputations with PolyhedraClosed Convex Subsets and Separating HyperplanesConvex FunctionsDifferentiable Functions of Several VariablesConvex Functions of Several VariablesConvex OptimizationAppendices:AnalysisLinear (In)dependence and the Rank of a Matrix Readership: Undergraduates focusing on convexity and optimization. Keywords:Convex Sets;Covex Functions;FourierâMotzkin Eliminination;KarushâKuhnâTucker Conditions;Quadratic OptimizationKey Features:Emphasis on viewing introductory convexity as a generalization of linear algebra in finding solutions to linear inequalitiesA key point is computation through concrete algorithms like the double description method. This enables students to carry out non-trivial computations alongside the introduction of the mathematical conceptsConvexity is inherently a geometric subject. However, without computational techniques, the teaching of the subject turns easily into a reproduction of abstractions and definitions. The book addresses this issue at a basic levelReviews: “Overall, the author has managed to keep a sound balance between the different approaches to convexity in geometry, analysis, and applied mathematics. The entire presentation is utmost lucid, didactically well-composed, thematically versatile and essentially self-contained. The large number of instructive examples and illustrating figures will certainly help the unexperienced reader grasp the abstract concepts, methods and results, all of which are treated in a mathematically rigorous way. Also, the emphasis on computational, especially algorithmic methods is a particular feature of this fine undergraduate textbook, which will be a great source for students and instructors like-wise … the book under review is an excellent, rather unique primer on convexity in several branches of mathematics.” Zentralblatt MATH “Undergraduate Convexity would make an excellent textbook. An instructor might choose to have students present some of the examples while he or she provides commentary, perhaps alternating coaching and lecturing. A course taught from this book could be a good transition into more abstract mathematics, exposing students to general theory then giving them the familiar comfort of more computational exercises. One could also use the book as a warm-up to a more advanced course in optimization.” MAA Review “The book is didactically written in a pleasant and lively style, with careful motivation of the considered notions, illuminating examples and pictures, and relevant historical remarks. This is a remarkable book, a readable and attractive introduction to the multi-faceted domain of convexity and its applications.” Nicolae Popovici Stud. Univ. Babes-Bolyai Math “Compared to most modern undergraduate math textbooks, this book is unusually thin and portable. It also contains a wealth of material, presented in a concise and delightful way, accompanied by figures, historical references, pointers to further reading, pictures of great mathematicians and snapshots of pages of their groundbreaking papers. There are numerous exercises, both of computational and theoretical nature. If you want to teach an undergraduate convexity course, this looks like an excellent choice for the textbook.” MathSciNet

## Convex Sets And Their Applications

**Author :**Steven R. Lay

**ISBN :**9780486458038

**Genre :**Mathematics

**File Size :**82. 61 MB

**Format :**PDF, ePub

**Download :**164

**Read :**445

Suitable for advanced undergraduates and graduate students, this text introduces the broad scope of convexity. It leads students to open questions and unsolved problems, and it highlights diverse applications. Author Steven R. Lay, Professor of Mathematics at Lee University in Tennessee, reinforces his teachings with numerous examples, plus exercises with hints and answers. The first three chapters form the foundation for all that follows, starting with a review of the fundamentals of linear algebra and topology. They also survey the development and applications of relationships between hyperplanes and convex sets. Subsequent chapters are relatively self-contained, each focusing on a particular aspect or application of convex sets. Topics include characterizations of convex sets, polytopes, duality, optimization, and convex functions. Hints, solutions, and references for the exercises appear at the back of the book.

## Variational Calculus And Optimal Control

**Author :**John L. Troutman

**ISBN :**9781461207375

**Genre :**Mathematics

**File Size :**30. 43 MB

**Format :**PDF, Mobi

**Download :**842

**Read :**1060

An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.

## Convexity

**Author :**Roger Webster

**ISBN :**0198531478

**Genre :**Mathematics

**File Size :**30. 6 MB

**Format :**PDF, Mobi

**Download :**637

**Read :**685

A wide-ranging introduction to convex sets and functions, suitable for final-year undergraduates and also graduate students.

## Geometry Of Convex Sets

**Author :**I. E. Leonard

**ISBN :**9781119022695

**Genre :**Mathematics

**File Size :**43. 31 MB

**Format :**PDF, Kindle

**Download :**932

**Read :**775

A gentle introduction to the geometry of convex sets in n-dimensional space Geometry of Convex Sets begins with basic definitions of the concepts of vector addition and scalar multiplication and then defines the notion of convexity for subsets of n-dimensional space. Many properties of convex sets can be discovered using just the linear structure. However, for more interesting results, it is necessary to introduce the notion of distance in order to discuss open sets, closed sets, bounded sets, and compact sets. The book illustrates the interplay between these linear and topological concepts, which makes the notion of convexity so interesting. Thoroughly class-tested, the book discusses topology and convexity in the context of normed linear spaces, specifically with a norm topology on an n-dimensional space. Geometry of Convex Sets also features: An introduction to n-dimensional geometry including points; lines; vectors; distance; norms; inner products; orthogonality; convexity; hyperplanes; and linear functionals Coverage of n-dimensional norm topology including interior points and open sets; accumulation points and closed sets; boundary points and closed sets; compact subsets of n-dimensional space; completeness of n-dimensional space; sequences; equivalent norms; distance between sets; and support hyperplanes · Basic properties of convex sets; convex hulls; interior and closure of convex sets; closed convex hulls; accessibility lemma; regularity of convex sets; affine hulls; flats or affine subspaces; affine basis theorem; separation theorems; extreme points of convex sets; supporting hyperplanes and extreme points; existence of extreme points; Krein–Milman theorem; polyhedral sets and polytopes; and Birkhoff’s theorem on doubly stochastic matrices Discussions of Helly’s theorem; the Art Gallery theorem; Vincensini’s problem; Hadwiger’s theorems; theorems of Radon and Caratheodory; Kirchberger’s theorem; Helly-type theorems for circles; covering problems; piercing problems; sets of constant width; Reuleaux triangles; Barbier’s theorem; and Borsuk’s problem Geometry of Convex Sets is a useful textbook for upper-undergraduate level courses in geometry of convex sets and is essential for graduate-level courses in convex analysis. An excellent reference for academics and readers interested in learning the various applications of convex geometry, the book is also appropriate for teachers who would like to convey a better understanding and appreciation of the field to students. I. E. Leonard, PhD, was a contract lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta. The author of over 15 peer-reviewed journal articles, he is a technical editor for the Canadian Applied Mathematical Quarterly journal. J. E. Lewis, PhD, is Professor Emeritus in the Department of Mathematical Sciences at the University of Alberta. He was the recipient of the Faculty of Science Award for Excellence in Teaching in 2004 as well as the PIMS Education Prize in 2002.

## Convex Optimization Euclidean Distance Geometry

**Author :**Jon Dattorro

**ISBN :**9780976401308

**Genre :**Mathematics

**File Size :**28. 97 MB

**Format :**PDF, ePub

**Download :**869

**Read :**1231

The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.

## Problems And Solutions For Undergraduate Analysis

**Author :**Rami Shakarchi

**ISBN :**9781461217381

**Genre :**Mathematics

**File Size :**76. 99 MB

**Format :**PDF, ePub

**Download :**227

**Read :**641

The present volume contains all the exercises and their solutions for Lang's second edition of Undergraduate Analysis. The wide variety of exercises, which range from computational to more conceptual and which are of vary ing difficulty, cover the following subjects and more: real numbers, limits, continuous functions, differentiation and elementary integration, normed vector spaces, compactness, series, integration in one variable, improper integrals, convolutions, Fourier series and the Fourier integral, functions in n-space, derivatives in vector spaces, the inverse and implicit mapping theorem, ordinary differential equations, multiple integrals, and differential forms. My objective is to offer those learning and teaching analysis at the undergraduate level a large number of completed exercises and I hope that this book, which contains over 600 exercises covering the topics mentioned above, will achieve my goal. The exercises are an integral part of Lang's book and I encourage the reader to work through all of them. In some cases, the problems in the beginning chapters are used in later ones, for example, in Chapter IV when one constructs-bump functions, which are used to smooth out singulari ties, and prove that the space of functions is dense in the space of regu lated maps. The numbering of the problems is as follows. Exercise IX. 5. 7 indicates Exercise 7, §5, of Chapter IX. Acknowledgments I am grateful to Serge Lang for his help and enthusiasm in this project, as well as for teaching me mathematics (and much more) with so much generosity and patience.

## Mathematics Of Optimization Smooth And Nonsmooth Case

**Author :**Giorgio Giorgi

**ISBN :**008053595X

**Genre :**Mathematics

**File Size :**29. 96 MB

**Format :**PDF, Docs

**Download :**374

**Read :**1198

The book is intended for people (graduates, researchers, but also undergraduates with a good mathematical background) involved in the study of (static) optimization problems (in finite-dimensional spaces). It contains a lot of material, from basic tools of convex analysis to optimality conditions for smooth optimization problems, for non smooth optimization problems and for vector optimization problems. The development of the subjects are self-contained and the bibliographical references are usually treated in different books (only a few books on optimization theory deal also with vector problems), so the book can be a starting point for further readings in a more specialized literature. Assuming only a good (even if not advanced) knowledge of mathematical analysis and linear algebra, this book presents various aspects of the mathematical theory in optimization problems. The treatment is performed in finite-dimensional spaces and with no regard to algorithmic questions. After two chapters concerning, respectively, introductory subjects and basic tools and concepts of convex analysis, the book treats extensively mathematical programming problems in the smmoth case, in the nonsmooth case and finally vector optimization problems. · Self-contained · Clear style and results are either proved or stated precisely with adequate references · The authors have several years experience in this field · Several subjects (some of them non usual in books of this kind) in one single book, including nonsmooth optimization and vector optimization problems · Useful long references list at the end of each chapter