adaptive sampling designs springerbriefs in statistics

Download Book Adaptive Sampling Designs Springerbriefs In Statistics in PDF format. You can Read Online Adaptive Sampling Designs Springerbriefs In Statistics here in PDF, EPUB, Mobi or Docx formats.

Adaptive Sampling Designs

Author : George A.F. Seber
ISBN : 9783642336577
Genre : Mathematics
File Size : 67. 4 MB
Format : PDF, ePub
Download : 676
Read : 238

Get This Book


This book aims to provide an overview of some adaptive techniques used in estimating parameters for finite populations where the sampling at any stage depends on the sampling information obtained to date. The sample adapts to new information as it comes in. These methods are especially used for sparse and clustered populations. Written by two acknowledged experts in the field of adaptive sampling.

Capture Recapture Parameter Estimation For Open Animal Populations

Author : George A. F. Seber
ISBN : 9783030181871
Genre :
File Size : 79. 87 MB
Format : PDF, Mobi
Download : 201
Read : 298

Get This Book



Modern Survey Sampling

Author : Arijit Chaudhuri
ISBN : 9781466572607
Genre : Mathematics
File Size : 46. 40 MB
Format : PDF, Docs
Download : 188
Read : 450

Get This Book


Starting from the preliminaries and ending with live examples, Modern Survey Sampling details what a sample can communicate about an unknowable aggregate in a real situation. The author lucidly develops and presents numerous approaches. He details recent developments and explores fresh and unseen problems, hitting upon possible solutions. The text covers current research output in a student-friendly manner with attractive illustrations. It introduces sampling and discusses how to select a sample for which a selection-probability is specified to prescribe its performance characteristics. The author then explains how to examine samples with varying probabilities to derive profits. He then examines how to use partial segments to make reasonable guesses about a sample’s behavior and assess the elements of discrepancies. Including case studies, exercises, and solutions, the book highlights special survey techniques needed to capture trustworthy data and put it to intelligent use. It then discusses the model-assisted approach and network sampling, before moving on to speculating about random processes. The author draws on his extensive teaching experience to create a textbook that gives your students a thorough grounding in the technologies of survey sampling and modeling and also provides you with the tools to teach them.

Bayesian Prediction And Adaptive Sampling Algorithms For Mobile Sensor Networks

Author : Yunfei Xu
ISBN : 9783319219219
Genre : Technology & Engineering
File Size : 29. 51 MB
Format : PDF, Mobi
Download : 181
Read : 740

Get This Book


This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constrained mobile sensors. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks starts with a simple spatio-temporal model and increases the level of model flexibility and uncertainty step by step, simultaneously solving increasingly complicated problems and coping with increasing complexity, until it ends with fully Bayesian approaches that take into account a broad spectrum of uncertainties in observations, model parameters, and constraints in mobile sensor networks. The book is timely, being very useful for many researchers in control, robotics, computer science and statistics trying to tackle a variety of tasks such as environmental monitoring and adaptive sampling, surveillance, exploration, and plume tracking which are of increasing currency. Problems are solved creatively by seamless combination of theories and concepts from Bayesian statistics, mobile sensor networks, optimal experiment design, and distributed computation.

A Rapid Introduction To Adaptive Filtering

Author : Leonardo Rey Vega
ISBN : 9783642302992
Genre : Technology & Engineering
File Size : 83. 7 MB
Format : PDF, ePub
Download : 997
Read : 154

Get This Book


In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of several topics of interest in the adaptive filtering field.

Group Sequential Clinical Trials With Multiple Co Objectives

Author : Toshimitsu Hamasaki
ISBN : 9784431559009
Genre : Mathematics
File Size : 37. 52 MB
Format : PDF, Mobi
Download : 412
Read : 155

Get This Book


This book focuses on group sequential methods for clinical trials with co-primary endpoints based on the decision-making frameworks for: (1) rejecting the null hypothesis (stopping for efficacy), (2) rejecting the alternative hypothesis (stopping for futility), and (3) rejecting the null or alternative hypothesis (stopping for either futility or efficacy), where the trial is designed to evaluate whether the intervention is superior to the control on all endpoints. For assessing futility, there are two fundamental approaches, i.e., the decision to stop for futility based on the conditional probability of rejecting the null hypothesis, and the other based on stopping boundaries using group sequential methods. In this book, the latter approach is discussed. The book also briefly deals with the group sequential methods for clinical trials designed to evaluate whether the intervention is superior to the control on at least one endpoint. In addition, the book describes sample size recalculation and the resulting effect on power and type I error rate. The book also describes group sequential strategies for three-arm clinical trials to demonstrate the non-inferiority of experimental intervention to actively control and to assess the assay sensitivity to placebo control.

Top Download:

Best Books