data clustering algorithms and applications chapman hall crc data mining and knowledge discovery series

Download Book Data Clustering Algorithms And Applications Chapman Hall Crc Data Mining And Knowledge Discovery Series in PDF format. You can Read Online Data Clustering Algorithms And Applications Chapman Hall Crc Data Mining And Knowledge Discovery Series here in PDF, EPUB, Mobi or Docx formats.

Data Clustering

Author : Charu C. Aggarwal
ISBN : 9781315360416
Genre : Business & Economics
File Size : 58. 22 MB
Format : PDF, ePub
Download : 303
Read : 1012

Get This Book


Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.

Data Clustering In C

Author : Guojun Gan
ISBN : 9781439862247
Genre : Business & Economics
File Size : 28. 69 MB
Format : PDF, ePub, Mobi
Download : 206
Read : 1289

Get This Book


Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However, few books exist to teach people how to implement data clustering algorithms. This book was written for anyone who wants to implement or improve their data clustering algorithms. Using object-oriented design and programming techniques, Data Clustering in C++ exploits the commonalities of all data clustering algorithms to create a flexible set of reusable classes that simplifies the implementation of any data clustering algorithm. Readers can follow the development of the base data clustering classes and several popular data clustering algorithms. Additional topics such as data pre-processing, data visualization, cluster visualization, and cluster interpretation are briefly covered. This book is divided into three parts-- Data Clustering and C++ Preliminaries: A review of basic concepts of data clustering, the unified modeling language, object-oriented programming in C++, and design patterns A C++ Data Clustering Framework: The development of data clustering base classes Data Clustering Algorithms: The implementation of several popular data clustering algorithms A key to learning a clustering algorithm is to implement and experiment the clustering algorithm. Complete listings of classes, examples, unit test cases, and GNU configuration files are included in the appendices of this book as well as in the CD-ROM of the book. The only requirements to compile the code are a modern C++ compiler and the Boost C++ libraries.

Temporal Data Mining

Author : Theophano Mitsa
ISBN : 1420089773
Genre : Computers
File Size : 28. 37 MB
Format : PDF, ePub, Mobi
Download : 978
Read : 336

Get This Book


Temporal data mining deals with the harvesting of useful information from temporal data. New initiatives in health care and business organizations have increased the importance of temporal information in data today. From basic data mining concepts to state-of-the-art advances, Temporal Data Mining covers the theory of this subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references. In the appendices, the author explains how data mining fits the overall goal of an organization and how these data can be interpreted for the purpose of characterizing a population. She also provides programs written in the Java language that implement some of the algorithms presented in the first chapter. Check out the author's blog at http://theophanomitsa.wordpress.com/

Data Classification

Author : Charu C. Aggarwal
ISBN : 9781466586758
Genre : Business & Economics
File Size : 24. 82 MB
Format : PDF, Mobi
Download : 707
Read : 713

Get This Book


Comprehensive Coverage of the Entire Area of Classification Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data. This comprehensive book focuses on three primary aspects of data classification: Methods: The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks. Domains: The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm. Variations: The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.

Contrast Data Mining

Author : Guozhu Dong
ISBN : 9781439854334
Genre : Business & Economics
File Size : 87. 23 MB
Format : PDF, ePub, Docs
Download : 744
Read : 1249

Get This Book


A Fruitful Field for Researching Data Mining Methodology and for Solving Real-Life Problems Contrast Data Mining: Concepts, Algorithms, and Applications collects recent results from this specialized area of data mining that have previously been scattered in the literature, making them more accessible to researchers and developers in data mining and other fields. The book not only presents concepts and techniques for contrast data mining, but also explores the use of contrast mining to solve challenging problems in various scientific, medical, and business domains. Learn from Real Case Studies of Contrast Mining Applications In this volume, researchers from around the world specializing in architecture engineering, bioinformatics, computer science, medicine, and systems engineering focus on the mining and use of contrast patterns. They demonstrate many useful and powerful capabilities of a variety of contrast mining techniques and algorithms, including tree-based structures, zero-suppressed binary decision diagrams, data cube representations, and clustering algorithms. They also examine how contrast mining is used in leukemia characterization, discriminative gene transfer and microarray analysis, computational toxicology, spatial and image data classification, voting analysis, heart disease prediction, crime analysis, understanding customer behavior, genetic algorithms, and network security.

Relational Data Clustering

Author : Bo Long
ISBN : 1420072625
Genre : Computers
File Size : 50. 20 MB
Format : PDF
Download : 268
Read : 169

Get This Book


A culmination of the authors’ years of extensive research on this topic, Relational Data Clustering: Models, Algorithms, and Applications addresses the fundamentals and applications of relational data clustering. It describes theoretic models and algorithms and, through examples, shows how to apply these models and algorithms to solve real-world problems. After defining the field, the book introduces different types of model formulations for relational data clustering, presents various algorithms for the corresponding models, and demonstrates applications of the models and algorithms through extensive experimental results. The authors cover six topics of relational data clustering: Clustering on bi-type heterogeneous relational data Multi-type heterogeneous relational data Homogeneous relational data clustering Clustering on the most general case of relational data Individual relational clustering framework Recent research on evolutionary clustering This book focuses on both practical algorithm derivation and theoretical framework construction for relational data clustering. It provides a complete, self-contained introduction to advances in the field.

Knowledge Discovery From Data Streams

Author : Joao Gama
ISBN : 9781439826126
Genre : Business & Economics
File Size : 34. 76 MB
Format : PDF, Kindle
Download : 373
Read : 454

Get This Book


Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents a coherent overview of state-of-the-art research in learning from data streams. The book covers the fundamentals that are imperative to understanding data streams and describes important applications, such as TCP/IP traffic, GPS data, sensor networks, and customer click streams. It also addresses several challenges of data mining in the future, when stream mining will be at the core of many applications. These challenges involve designing useful and efficient data mining solutions applicable to real-world problems. In the appendix, the author includes examples of publicly available software and online data sets. This practical, up-to-date book focuses on the new requirements of the next generation of data mining. Although the concepts presented in the text are mainly about data streams, they also are valid for different areas of machine learning and data mining.

Event Mining

Author : Tao Li
ISBN : 9781466568594
Genre : Business & Economics
File Size : 32. 31 MB
Format : PDF, Mobi
Download : 506
Read : 769

Get This Book


Event mining encompasses techniques for automatically and efficiently extracting valuable knowledge from historical event/log data. The field, therefore, plays an important role in data-driven system management. Event Mining: Algorithms and Applications presents state-of-the-art event mining approaches and applications with a focus on computing system management. The book first explains how to transform log data in disparate formats and contents into a canonical form as well as how to optimize system monitoring. It then shows how to extract useful knowledge from data. It describes intelligent and efficient methods and algorithms to perform data-driven pattern discovery and problem determination for managing complex systems. The book also discusses data-driven approaches for the detailed diagnosis of a system issue and addresses the application of event summarization in Twitter messages (tweets). Understanding the interdisciplinary field of event mining can be challenging as it requires familiarity with several research areas and the relevant literature is scattered in diverse publications. This book makes it easier to explore the field by providing both a good starting point for readers not familiar with the topics and a comprehensive reference for those already working in this area.

Computational Methods Of Feature Selection

Author : Huan Liu
ISBN : 1584888792
Genre : Computers
File Size : 62. 17 MB
Format : PDF, Docs
Download : 516
Read : 180

Get This Book


Due to increasing demands for dimensionality reduction, research on feature selection has deeply and widely expanded into many fields, including computational statistics, pattern recognition, machine learning, data mining, and knowledge discovery. Highlighting current research issues, Computational Methods of Feature Selection introduces the basic concepts and principles, state-of-the-art algorithms, and novel applications of this tool. The book begins by exploring unsupervised, randomized, and causal feature selection. It then reports on some recent results of empowering feature selection, including active feature selection, decision-border estimate, the use of ensembles with independent probes, and incremental feature selection. This is followed by discussions of weighting and local methods, such as the ReliefF family, k-means clustering, local feature relevance, and a new interpretation of Relief. The book subsequently covers text classification, a new feature selection score, and both constraint-guided and aggressive feature selection. The final section examines applications of feature selection in bioinformatics, including feature construction as well as redundancy-, ensemble-, and penalty-based feature selection. Through a clear, concise, and coherent presentation of topics, this volume systematically covers the key concepts, underlying principles, and inventive applications of feature selection, illustrating how this powerful tool can efficiently harness massive, high-dimensional data and turn it into valuable, reliable information.

Text Mining

Author : Ashok N. Srivastava
ISBN : 1420059459
Genre : Computers
File Size : 55. 99 MB
Format : PDF, ePub
Download : 379
Read : 421

Get This Book


The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the Field Giving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify text documents and applies these methods in a variety of areas, including adaptive information filtering, information distillation, and text search. The book begins with chapters on the classification of documents into predefined categories. It presents state-of-the-art algorithms and their use in practice. The next chapters describe novel methods for clustering documents into groups that are not predefined. These methods seek to automatically determine topical structures that may exist in a document corpus. The book concludes by discussing various text mining applications that have significant implications for future research and industrial use. There is no doubt that text mining will continue to play a critical role in the development of future information systems and advances in research will be instrumental to their success. This book captures the technical depth and immense practical potential of text mining, guiding readers to a sound appreciation of this burgeoning field.

Top Download:

Best Books