hyperbolic geometry

Download Book Hyperbolic Geometry in PDF format. You can Read Online Hyperbolic Geometry here in PDF, EPUB, Mobi or Docx formats.

Sources Of Hyperbolic Geometry

Author : John Stillwell
ISBN : 0821809229
Genre : Mathematics
File Size : 30. 47 MB
Format : PDF, ePub, Docs
Download : 567
Read : 314

Get This Book


This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincare that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue--not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincare brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Poincare in their full brilliance.

Hyperbolic Geometry

Author : Birger Iversen
ISBN : 0521435285
Genre : Mathematics
File Size : 29. 86 MB
Format : PDF, ePub
Download : 946
Read : 1272

Get This Book


Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics. In this book, the rich geometry of the hyperbolic plane is studied in detail, leading to the focal point of the book, Poincare's polygon theorem and the relationship between hyperbolic geometries and discrete groups of isometries. Hyperbolic 3-space is also discussed, and the directions that current research in this field is taking are sketched. This will be an excellent introduction to hyperbolic geometry for students new to the subject, and for experts in other fields.

Hyperbolic Geometry

Author : James W. Anderson
ISBN : 9781846282201
Genre : Mathematics
File Size : 36. 68 MB
Format : PDF, ePub
Download : 470
Read : 880

Get This Book


Thoroughly updated, featuring new material on important topics such as hyperbolic geometry in higher dimensions and generalizations of hyperbolicity Includes full solutions for all exercises Successful first edition sold over 800 copies in North America

Complex Hyperbolic Geometry

Author : William Mark Goldman
ISBN : 019853793X
Genre : Mathematics
File Size : 66. 18 MB
Format : PDF, Kindle
Download : 153
Read : 571

Get This Book


Complex hyperbolic geometry is a particularly rich area of study, enhanced by the confluence of several areas of research including Riemannian geometry, complex analysis, symplectic and contact geometry, Lie group theory, and harmonic analysis. The boundary of complex hyperbolic geometry, known as spherical CR or Heisenberg geometry, is equally rich, and although there exist accounts of analysis in such spaces there is currently no account of their geometry. This book redresses the balance and provides an overview of the geometry of both the complex hyperbolic space and its boundary. Motivated by applications of the theory to geometric structures, moduli spaces and discrete groups, it is designed to provide an introduction to this fascinating and important area and invite further research and development.

Lectures On Hyperbolic Geometry

Author : Riccardo Benedetti
ISBN : 9783642581588
Genre : Mathematics
File Size : 40. 24 MB
Format : PDF
Download : 769
Read : 552

Get This Book


Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichm├╝ller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.

Introduction To Hyperbolic Geometry

Author : Arlan Ramsay
ISBN : 9781475755855
Genre : Mathematics
File Size : 39. 53 MB
Format : PDF, ePub
Download : 221
Read : 1039

Get This Book


This book is an introduction to hyperbolic and differential geometry that provides material in the early chapters that can serve as a textbook for a standard upper division course on hyperbolic geometry. For that material, the students need to be familiar with calculus and linear algebra and willing to accept one advanced theorem from analysis without proof. The book goes well beyond the standard course in later chapters, and there is enough material for an honors course, or for supplementary reading. Indeed, parts of the book have been used for both kinds of courses. Even some of what is in the early chapters would surely not be nec essary for a standard course. For example, detailed proofs are given of the Jordan Curve Theorem for Polygons and of the decomposability of poly gons into triangles, These proofs are included for the sake of completeness, but the results themselves are so believable that most students should skip the proofs on a first reading. The axioms used are modern in character and more "user friendly" than the traditional ones. The familiar real number system is used as an in gredient rather than appearing as a result of the axioms. However, it should not be thought that the geometric treatment is in terms of models: this is an axiomatic approach that is just more convenient than the traditional ones.

Analytic Hyperbolic Geometry

Author : Abraham A. Ungar
ISBN : 9789812703279
Genre : Mathematics
File Size : 53. 96 MB
Format : PDF, Mobi
Download : 204
Read : 150

Get This Book


This is the first book on analytic hyperbolic geometry, fully analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics just as analytic Euclidean geometry regulates classical mechanics. The book presents a novel gyrovector space approach to analytic hyperbolic geometry, fully analogous to the well-known vector space approach to Euclidean geometry. A gyrovector is a hyperbolic vector. In the resulting "gyrolanguage" of the book, one attaches the prefix "gyro" to a classical term to mean the analogous term in hyperbolic geometry. The book begins with the definition of gyrogroups, which is fully analogous to the definition of groups. Gyrogroups, both gyrocommutative and nongyrocommutative, abound in group theory. Surprisingly, the seemingly structureless Einstein velocity addition of special relativity turns out to be a gyrocommutative gyrogroup operation. Introducing scalar multiplication, some gyrocommutative gyrogroups of gyrovectors become gyrovector spaces. The latter, in turn, form the setting for analytic hyperbolic geometry just as vector spaces form the setting for analytic Euclidean geometry. By hybrid techniques of differential geometry and gyrovector spaces, it is shown that Einstein (Mobius) gyrovector spaces form the setting for Beltrami-Klein (Poincare) ball models of hyperbolic geometry. Finally, novel applications of Mobius gyrovector spaces in quantum computation, and of Einstein gyrovector spaces in special relativity, are presented.

Hyperbolic Geometry From A Local Viewpoint

Author : Linda Keen
ISBN : 9780521682244
Genre : Mathematics
File Size : 74. 44 MB
Format : PDF, ePub, Mobi
Download : 652
Read : 359

Get This Book


A self-contained text on hyperbolic geometry for plane domains, ideal for graduate students and academic researchers.

Conformal Dynamics And Hyperbolic Geometry

Author : Linda Keen
ISBN : 9780821853481
Genre : Mathematics
File Size : 39. 35 MB
Format : PDF, Docs
Download : 910
Read : 757

Get This Book


This volume contains the proceedings of the Conference on Conformal Dynamics and Hyperbolic Geometry, held October 21-23, 2010, in honor of Linda Keen's 70th birthday. This volume provides a valuable introduction to problems in conformal and hyperbolic geometry and one dimensional, conformal dynamics. It includes a classic expository article by John Milnor on the structure of hyperbolic components of the parameter space for dynamical systems arising from the iteration of polynomial maps in the complex plane. In addition there are foundational results concerning Teichmuller theory, the geometry of Fuchsian and Kleinian groups, domain convergence properties for the Poincare metric, elaboration of the theory of the universal solenoid, the geometry of dynamical systems acting on a circle, and realization of Thompson's group as a mapping class group for a uniformly asymptotically affine circle endomorphism. The portion of the volume dealing with complex dynamics will appeal to a diverse group of mathematicians. Recently many researchers working in a wide range of topics, including topology, algebraic geometry, complex analysis, and dynamical systems, have become involved in aspects of this field.

A Gyrovector Space Approach To Hyperbolic Geometry

Author : Abraham A. Ungar
ISBN : 9781598298222
Genre : Mathematics
File Size : 81. 49 MB
Format : PDF, Docs
Download : 617
Read : 895

Get This Book


The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry

Top Download:

Best Books