introduction to linear regression analysis

Download Book Introduction To Linear Regression Analysis in PDF format. You can Read Online Introduction To Linear Regression Analysis here in PDF, EPUB, Mobi or Docx formats.

Introduction To Linear Regression Analysis

Author : Douglas C. Montgomery
ISBN : 9781119180173
Genre : Mathematics
File Size : 69. 7 MB
Format : PDF, Docs
Download : 481
Read : 916

Get This Book


Praise for the Fourth Edition "As with previous editions, the authors have produced a leadingtextbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to thefundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Editioncontinues to present both the conventional and less common uses oflinear regression in today’s cutting-edge scientificresearch. The authors blend both theory and application to equipreaders with an understanding of the basic principles needed toapply regression model-building techniques in various fields ofstudy, including engineering, management, and the healthsciences. Following a general introduction to regression modeling,including typical applications, a host of technical tools areoutlined such as basic inference procedures, introductory aspectsof model adequacy checking, and polynomial regression models andtheir variations. The book then discusses how transformations andweighted least squares can be used to resolve problems of modelinadequacy and also how to deal with influential observations. TheFifth Edition features numerous newly added topics,including: A chapter on regression analysis of time series data thatpresents the Durbin-Watson test and other techniques for detectingautocorrelation as well as parameter estimation in time seriesregression models Regression models with random effects in addition to adiscussion on subsampling and the importance of the mixedmodel Tests on individual regression coefficients and subsets ofcoefficients Examples of current uses of simple linear regression models andthe use of multiple regression models for understanding patientsatisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors haveincorporated JMP and the freely available R software to illustratethe discussed techniques and procedures in this new edition.Numerous exercises have been added throughout, allowing readers totest their understanding of the material. Introduction to Linear Regression Analysis, Fifth Editionis an excellent book for statistics and engineering courses onregression at the upper-undergraduate and graduate levels. The bookalso serves as a valuable, robust resource for professionals in thefields of engineering, life and biological sciences, and the socialsciences.

Solutions Manual To Accompany Introduction To Linear Regression Analysis

Author : Douglas C. Montgomery
ISBN : 9781118548509
Genre : Mathematics
File Size : 31. 23 MB
Format : PDF
Download : 319
Read : 795

Get This Book


As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.

Introduction To Linear Regression Analysis

Author : Douglas C. Montgomery
ISBN : 0471533874
Genre : Mathematics
File Size : 88. 34 MB
Format : PDF, ePub
Download : 926
Read : 539

Get This Book


Covers both theory and application so the reader can understand the basic principles and apply regression methods in a variety of practical settings. Revisions include new material on regression diagnostics, more sample computer output with expanded interpretations, a discussion on handling missing observations and introductions to handling generalized linear models and nonlinear regression.

Introduction To Linear Regression Analysis 3rd Ed

Author : Douglas C. Montgomery
ISBN : 8126510471
Genre : Regression analysis
File Size : 86. 84 MB
Format : PDF, ePub, Mobi
Download : 268
Read : 1306

Get This Book


Market_Desc: · Practitioners in diverse fields, including engineers, who use regression analysis techniques Special Features: A revised and updated edition of a book with a solid reputation for its excellent treatment of the theory and applications of linear regression analysis, integrating standard topics with some of the newer and less conventional areas. The new edition features complete reorganization of the material since the previous edition was published in 1992, allowing for a more logical flow of bite-sized material while keeping the size of the book manageable. Modern topics added include classification and regression analysis (CART), neural networks, and the bootstrap, among others.· Expanded topics include robust regression, nonlinear regression, GLMs, and others· Problems and data sets have been extensively revised· Remains oriented toward the analyst who uses computers for problem solution· Authors have greatly expanded the discussion of regression diagnostics, illustrating all of the major procedures available in contemporary software packages· An accompanying Web site contains data sets, extensive problem solutions, and software hints About The Book: This book is intended as a text for a basic course in linear regression analysis. It contains the standard topics as well as some of the newer and more unconventional ones and blends both theory and application so that the reader will obtain and understanding of the basic principles necessary to apply regression methods in a variety of practical settings.

Introduction To Linear Regression Analysis Textbook And Student Solutions Manual

Author : Douglas C. Montgomery
ISBN : 0471225908
Genre : Mathematics
File Size : 34. 32 MB
Format : PDF
Download : 837
Read : 982

Get This Book


A comprehensive and thoroughly up-to-date look at regression analysis-still the most widely used technique in statistics today As basic to statistics as the Pythagorean theorem is to geometry, regression analysis is a statistical technique for investigating and modeling the relationship between variables. With far-reaching applications in almost every field, regression analysis is used in engineering, the physical and chemical sciences, economics, management, life and biological sciences, and the social sciences. Clearly balancing theory with applications, Introduction to Linear Regression Analysis describes conventional uses of the technique, as well as less common ones, placing linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. Succeeding chapters include detailed coverage of: * Indicator variables, making the connection between regression and analysis-of-variance modelss * Variable selection and model-building techniques * The multicollinearity problem, including its sources, harmful effects, diagnostics, and remedial measures * Robust regression techniques, including M-estimators, Least Median of Squares, and S-estimation * Generalized linear models The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation. Topics not usually found in a linear regression textbook, such as nonlinear regression and generalized linear models, yet critical to engineering students and professionals, have also been included. The new critical role of the computer in regression analysis is reflected in the book's expanded discussion of regression diagnostics, where major analytical procedures now available in contemporary software packages, such as SAS, Minitab, and S-Plus, are detailed. The Appendix now includes ample background material on the theory of linear models underlying regression analysis. Data sets from the book, extensive problem solutions, and software hints are available on the ftp site. For other Wiley books by Doug Montgomery, visit our website at www.wiley.com/college/montgomery.

Introduction To Linear Regression Analysis Student Solutions Manual

Author : Douglas C. Montgomery
ISBN : 0471413763
Genre : Mathematics
File Size : 46. 76 MB
Format : PDF, Mobi
Download : 358
Read : 489

Get This Book


A comprehensive and thoroughly up-to-date look at regression analysis-still the most widely used technique in statistics today As basic to statistics as the Pythagorean theorem is to geometry, regression analysis is a statistical technique for investigating and modeling the relationship between variables. With far-reaching applications in almost every field, regression analysis is used in engineering, the physical and chemical sciences, economics, management, life and biological sciences, and the social sciences. Clearly balancing theory with applications, Introduction to Linear Regression Analysis describes conventional uses of the technique, as well as less common ones, placing linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. Succeeding chapters include detailed coverage of: * Indicator variables, making the connection between regression and analysis-of-variance modelss * Variable selection and model-building techniques * The multicollinearity problem, including its sources, harmful effects, diagnostics, and remedial measures * Robust regression techniques, including M-estimators, Least Median of Squares, and S-estimation * Generalized linear models The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation. Topics not usually found in a linear regression textbook, such as nonlinear regression and generalized linear models, yet critical to engineering students and professionals, have also been included. The new critical role of the computer in regression analysis is reflected in the book's expanded discussion of regression diagnostics, where major analytical procedures now available in contemporary software packages, such as SAS, Minitab, and S-Plus, are detailed. The Appendix now includes ample background material on the theory of linear models underlying regression analysis. Data sets from the book, extensive problem solutions, and software hints are available on the ftp site. For other Wiley books by Doug Montgomery, visit our website at www.wiley.com/college/montgomery.

Introduction To Linear Regression Analysis

Author : Douglas C. Montgomery
ISBN : 0471315656
Genre : Mathematics
File Size : 22. 21 MB
Format : PDF, ePub, Docs
Download : 640
Read : 638

Get This Book


A comprehensive and thoroughly up-to-date look at regression analysis-still the most widely used technique in statistics today As basic to statistics as the Pythagorean theorem is to geometry, regression analysis is a statistical technique for investigating and modeling the relationship between variables. With far-reaching applications in almost every field, regression analysis is used in engineering, the physical and chemical sciences, economics, management, life and biological sciences, and the social sciences. Clearly balancing theory with applications, Introduction to Linear Regression Analysis describes conventional uses of the technique, as well as less common ones, placing linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. Succeeding chapters include detailed coverage of: * Indicator variables, making the connection between regression and analysis-of-variance modelss * Variable selection and model-building techniques * The multicollinearity problem, including its sources, harmful effects, diagnostics, and remedial measures * Robust regression techniques, including M-estimators, Least Median of Squares, and S-estimation * Generalized linear models The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation. Topics not usually found in a linear regression textbook, such as nonlinear regression and generalized linear models, yet critical to engineering students and professionals, have also been included. The new critical role of the computer in regression analysis is reflected in the book's expanded discussion of regression diagnostics, where major analytical procedures now available in contemporary software packages, such as SAS, Minitab, and S-Plus, are detailed. The Appendix now includes ample background material on the theory of linear models underlying regression analysis. Data sets from the book, extensive problem solutions, and software hints are available on the ftp site. For other Wiley books by Doug Montgomery, visit our website at www.wiley.com/college/montgomery.

Introduction To Linear Regression Analysis 6th Edition Solutions Manual Cloth

Author : Montgomery
ISBN : 1119578698
Genre :
File Size : 89. 16 MB
Format : PDF, ePub, Docs
Download : 276
Read : 1165

Get This Book



Generalized Linear Models

Author : Raymond H. Myers
ISBN : 9780470556979
Genre : Mathematics
File Size : 26. 28 MB
Format : PDF, ePub, Docs
Download : 531
Read : 214

Get This Book


Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.

An Introduction To Regression Graphics

Author : R. Dennis Cook
ISBN : 9780470317709
Genre : Mathematics
File Size : 63. 22 MB
Format : PDF, Kindle
Download : 378
Read : 581

Get This Book


Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Top Download:

Best Books