# machine learning using r

**Download Book Machine Learning Using R in PDF format. You can Read Online Machine Learning Using R here in PDF, EPUB, Mobi or Docx formats.**

## Machine Learning With R The Tidyverse And Mlr

**Author :**Hefin I. Rhys

**ISBN :**9781617296574

**Genre :**Computers

**File Size :**86. 55 MB

**Format :**PDF, Mobi

**Download :**867

**Read :**259

Summary Machine learning (ML) is a collection of programming techniques for discovering relationships in data. With ML algorithms, you can cluster and classify data for tasks like making recommendations or fraud detection and make predictions for sales trends, risk analysis, and other forecasts. Once the domain of academic data scientists, machine learning has become a mainstream business process, and tools like the easy-to-learn R programming language put high-quality data analysis in the hands of any programmer. Machine Learning with R, the tidyverse, and mlr teaches you widely used ML techniques and how to apply them to your own datasets using the R programming language and its powerful ecosystem of tools. This book will get you started! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Machine Learning with R, the tidyverse, and mlr gets you started in machine learning using R Studio and the awesome mlr machine learning package. This practical guide simplifies theory and avoids needlessly complicated statistics or math. All core ML techniques are clearly explained through graphics and easy-to-grasp examples. In each engaging chapter, you’ll put a new algorithm into action to solve a quirky predictive analysis problem, including Titanic survival odds, spam email filtering, and poisoned wine investigation. What's inside Using the tidyverse packages to process and plot your data Techniques for supervised and unsupervised learning Classification, regression, dimension reduction, and clustering algorithms Statistics primer to fill gaps in your knowledge About the reader For newcomers to machine learning with basic skills in R. About the author Hefin I. Rhys is a senior laboratory research scientist at the Francis Crick Institute. He runs his own YouTube channel of screencast tutorials for R and RStudio. Table of contents: PART 1 - INTRODUCTION 1.Introduction to machine learning 2. Tidying, manipulating, and plotting data with the tidyverse PART 2 - CLASSIFICATION 3. Classifying based on similarities with k-nearest neighbors 4. Classifying based on odds with logistic regression 5. Classifying by maximizing separation with discriminant analysis 6. Classifying with naive Bayes and support vector machines 7. Classifying with decision trees 8. Improving decision trees with random forests and boosting PART 3 - REGRESSION 9. Linear regression 10. Nonlinear regression with generalized additive models 11. Preventing overfitting with ridge regression, LASSO, and elastic net 12. Regression with kNN, random forest, and XGBoost PART 4 - DIMENSION REDUCTION 13. Maximizing variance with principal component analysis 14. Maximizing similarity with t-SNE and UMAP 15. Self-organizing maps and locally linear embedding PART 5 - CLUSTERING 16. Clustering by finding centers with k-means 17. Hierarchical clustering 18. Clustering based on density: DBSCAN and OPTICS 19. Clustering based on distributions with mixture modeling 20. Final notes and further reading

## Machine Learning Using R

**Author :**Karthik Ramasubramanian

**ISBN :**9781484242155

**Genre :**Computers

**File Size :**50. 70 MB

**Format :**PDF, ePub

**Download :**893

**Read :**270

Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R. As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning. What You'll Learn Understand machine learning algorithms using R Master the process of building machine-learning models Cover the theoretical foundations of machine-learning algorithms See industry focused real-world use cases Tackle time series modeling in R Apply deep learning using Keras and TensorFlow in R Who This Book is For Data scientists, data science professionals, and researchers in academia who want to understand the nuances of machine-learning approaches/algorithms in practice using R.

## Advanced Deep Learning With R

**Author :**Bharatendra Rai

**ISBN :**9781789534986

**Genre :**Computers

**File Size :**88. 35 MB

**Format :**PDF

**Download :**812

**Read :**614

Discover best practices for choosing, building, training, and improving deep learning models using Keras-R, and TensorFlow-R libraries Key Features Implement deep learning algorithms to build AI models with the help of tips and tricks Understand how deep learning models operate using expert techniques Apply reinforcement learning, computer vision, GANs, and NLP using a range of datasets Book Description Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data. Advanced Deep Learning with R will help you understand popular deep learning architectures and their variants in R, along with providing real-life examples for them. This deep learning book starts by covering the essential deep learning techniques and concepts for prediction and classification. You will learn about neural networks, deep learning architectures, and the fundamentals for implementing deep learning with R. The book will also take you through using important deep learning libraries such as Keras-R and TensorFlow-R to implement deep learning algorithms within applications. You will get up to speed with artificial neural networks, recurrent neural networks, convolutional neural networks, long short-term memory networks, and more using advanced examples. Later, you'll discover how to apply generative adversarial networks (GANs) to generate new images; autoencoder neural networks for image dimension reduction, image de-noising and image correction and transfer learning to prepare, define, train, and model a deep neural network. By the end of this book, you will be ready to implement your knowledge and newly acquired skills for applying deep learning algorithms in R through real-world examples. What you will learn Learn how to create binary and multi-class deep neural network models Implement GANs for generating new images Create autoencoder neural networks for image dimension reduction, image de-noising and image correction Implement deep neural networks for performing efficient text classification Learn to define a recurrent convolutional network model for classification in Keras Explore best practices and tips for performance optimization of various deep learning models Who this book is for This book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to develop their skills and knowledge to implement deep learning techniques and algorithms using the power of R. A solid understanding of machine learning and working knowledge of the R programming language are required.

## Practical Machine Learning With R

**Author :**Brindha Priyadarshini Jeyaraman

**ISBN :**9781838552848

**Genre :**Computers

**File Size :**78. 4 MB

**Format :**PDF, ePub

**Download :**253

**Read :**244

Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problems Key Features Gain a comprehensive overview of different machine learning techniques Explore various methods for selecting a particular algorithm Implement a machine learning project from problem definition through to the final model Book Description With huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed. With machine learning techniques and R, you can easily develop these kinds of applications in an efficient way. Practical Machine Learning with R begins by helping you grasp the basics of machine learning methods, while also highlighting how and why they work. You will understand how to get these algorithms to work in practice, rather than focusing on mathematical derivations. As you progress from one chapter to another, you will gain hands-on experience of building a machine learning solution in R. Next, using R packages such as rpart, random forest, and multiple imputation by chained equations (MICE), you will learn to implement algorithms including neural net classifier, decision trees, and linear and non-linear regression. As you progress through the book, you’ll delve into various machine learning techniques for both supervised and unsupervised learning approaches. In addition to this, you’ll gain insights into partitioning the datasets and mechanisms to evaluate the results from each model and be able to compare them. By the end of this book, you will have gained expertise in solving your business problems, starting by forming a good problem statement, selecting the most appropriate model to solve your problem, and then ensuring that you do not overtrain it. What you will learn Define a problem that can be solved by training a machine learning model Obtain, verify and clean data before transforming it into the correct format for use Perform exploratory analysis and extract features from data Build models for neural net, linear and non-linear regression, classification, and clustering Evaluate the performance of a model with the right metrics Implement a classification problem using the neural net package Employ a decision tree using the random forest library Who this book is for If you are a data analyst, data scientist, or a business analyst who wants to understand the process of machine learning and apply it to a real dataset using R, this book is just what you need. Data scientists who use Python and want to implement their machine learning solutions using R will also find this book very useful. The book will also enable novice programmers to start their journey in data science. Basic knowledge of any programming language is all you need to get started.

## Machine Learning With R

**Author :**Brett Lantz

**ISBN :**9781788291552

**Genre :**Computers

**File Size :**57. 93 MB

**Format :**PDF, ePub

**Download :**388

**Read :**237

Solve real-world data problems with R and machine learning Key Features Third edition of the bestselling, widely acclaimed R machine learning book, updated and improved for R 3.6 and beyond Harness the power of R to build flexible, effective, and transparent machine learning models Learn quickly with a clear, hands-on guide by experienced machine learning teacher and practitioner, Brett Lantz Book Description Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R. What you will learn Discover the origins of machine learning and how exactly a computer learns by example Prepare your data for machine learning work with the R programming language Classify important outcomes using nearest neighbor and Bayesian methods Predict future events using decision trees, rules, and support vector machines Forecast numeric data and estimate financial values using regression methods Model complex processes with artificial neural networks — the basis of deep learning Avoid bias in machine learning models Evaluate your models and improve their performance Connect R to SQL databases and emerging big data technologies such as Spark, H2O, and TensorFlow Who this book is for Data scientists, students, and other practitioners who want a clear, accessible guide to machine learning with R.

## Machine Learning With R

**Author :**Abhijit Ghatak

**ISBN :**9789811068089

**Genre :**Computers

**File Size :**53. 8 MB

**Format :**PDF

**Download :**339

**Read :**688

This book helps readers understand the mathematics of machine learning, and apply them in different situations. It is divided into two basic parts, the first of which introduces readers to the theory of linear algebra, probability, and data distributions and it’s applications to machine learning. It also includes a detailed introduction to the concepts and constraints of machine learning and what is involved in designing a learning algorithm. This part helps readers understand the mathematical and statistical aspects of machine learning. In turn, the second part discusses the algorithms used in supervised and unsupervised learning. It works out each learning algorithm mathematically and encodes it in R to produce customized learning applications. In the process, it touches upon the specifics of each algorithm and the science behind its formulation. The book includes a wealth of worked-out examples along with R codes. It explains the code for each algorithm, and readers can modify the code to suit their own needs. The book will be of interest to all researchers who intend to use R for machine learning, and those who are interested in the practical aspects of implementing learning algorithms for data analysis. Further, it will be particularly useful and informative for anyone who has struggled to relate the concepts of mathematics and statistics to machine learning.

## R Deep Learning Cookbook

**Author :**Dr. PKS Prakash

**ISBN :**9781787127111

**Genre :**Computers

**File Size :**44. 31 MB

**Format :**PDF, ePub

**Download :**837

**Read :**964

Powerful, independent recipes to build deep learning models in different application areas using R libraries About This Book Master intricacies of R deep learning packages such as mxnet & tensorflow Learn application on deep learning in different domains using practical examples from text, image and speech Guide to set-up deep learning models using CPU and GPU Who This Book Is For Data science professionals or analysts who have performed machine learning tasks and now want to explore deep learning and want a quick reference that could address the pain points while implementing deep learning. Those who wish to have an edge over other deep learning professionals will find this book quite useful. What You Will Learn Build deep learning models in different application areas using TensorFlow, H2O, and MXnet. Analyzing a Deep boltzmann machine Setting up and Analysing Deep belief networks Building supervised model using various machine learning algorithms Set up variants of basic convolution function Represent data using Autoencoders. Explore generative models available in Deep Learning. Discover sequence modeling using Recurrent nets Learn fundamentals of Reinforcement Leaning Learn the steps involved in applying Deep Learning in text mining Explore application of deep learning in signal processing Utilize Transfer learning for utilizing pre-trained model Train a deep learning model on a GPU In Detail Deep Learning is the next big thing. It is a part of machine learning. It's favorable results in applications with huge and complex data is remarkable. Simultaneously, R programming language is very popular amongst the data miners and statisticians. This book will help you to get through the problems that you face during the execution of different tasks and Understand hacks in deep learning, neural networks, and advanced machine learning techniques. It will also take you through complex deep learning algorithms and various deep learning packages and libraries in R. It will be starting with different packages in Deep Learning to neural networks and structures. You will also encounter the applications in text mining and processing along with a comparison between CPU and GPU performance. By the end of the book, you will have a logical understanding of Deep learning and different deep learning packages to have the most appropriate solutions for your problems. Style and approach Collection of hands-on recipes that would act as your all-time reference for your deep learning needs

## R Machine Learning By Example

**Author :**Raghav Bali

**ISBN :**9781784392635

**Genre :**Computers

**File Size :**29. 80 MB

**Format :**PDF, Kindle

**Download :**451

**Read :**494

Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully About This Book Get to grips with the concepts of machine learning through exciting real-world examples Visualize and solve complex problems by using power-packed R constructs and its robust packages for machine learning Learn to build your own machine learning system with this example-based practical guide Who This Book Is For If you are interested in mining useful information from data using state-of-the-art techniques to make data-driven decisions, this is a go-to guide for you. No prior experience with data science is required, although basic knowledge of R is highly desirable. Prior knowledge in machine learning would be helpful but is not necessary. What You Will Learn Utilize the power of R to handle data extraction, manipulation, and exploration techniques Use R to visualize data spread across multiple dimensions and extract useful features Explore the underlying mathematical and logical concepts that drive machine learning algorithms Dive deep into the world of analytics to predict situations correctly Implement R machine learning algorithms from scratch and be amazed to see the algorithms in action Write reusable code and build complete machine learning systems from the ground up Solve interesting real-world problems using machine learning and R as the journey unfolds Harness the power of robust and optimized R packages to work on projects that solve real-world problems in machine learning and data science In Detail Data science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems. This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems. You'll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms. Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R. Style and approach The book is an enticing journey that starts from the very basics to gradually pick up pace as the story unfolds. Each concept is first defined in the larger context of things succinctly, followed by a detailed explanation of their application. Each topic is explained with the help of a project that solves a real real-world problem involving hands-on work thus giving you a deep insight into the world of machine learning.

## Machine Learning

**Author :**Karen Mazidi

**ISBN :**1721979611

**Genre :**

**File Size :**28. 71 MB

**Format :**PDF

**Download :**646

**Read :**840

Machine Learning is a valuable skill for today's professionals. This book will give you the knowledge and skills you need to implement machine learning solutions. The approach is to give a conceptual understanding of the most common machine learning algorithms and practical experience in implementing them. Along the way, many practical tips are shared in the context of a wide array of machine learning examples. A companion website provides code samples used in the book. Download a free preview chapter at https: //karenmazidi.blogspot.com/

## Introduction To Deep Learning Using R

**Author :**Taweh Beysolow II

**ISBN :**9781484227343

**Genre :**Business & Economics

**File Size :**24. 52 MB

**Format :**PDF, ePub

**Download :**965

**Read :**515

Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. What You'll Learn Understand the intuition and mathematics that power deep learning models Utilize various algorithms using the R programming language and its packages Use best practices for experimental design and variable selection Practice the methodology to approach and effectively solve problems as a data scientist Evaluate the effectiveness of algorithmic solutions and enhance their predictive power Who This Book Is For Students, researchers, and data scientists who are familiar with programming using R. This book also is also of use for those who wish to learn how to appropriately deploy these algorithms in applications where they would be most useful.