neural-networks-and-statistical-learning

Download Book Neural Networks And Statistical Learning in PDF format. You can Read Online Neural Networks And Statistical Learning here in PDF, EPUB, Mobi or Docx formats.

Neural Networks And Statistical Learning

Author : Ke-Lin Du
ISBN : 9781447174523
Genre : Mathematics
File Size : 54. 64 MB
Format : PDF, Kindle
Download : 399
Read : 473

Get This Book


This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Statistical Learning Using Neural Networks

Author : Basilio de Braganca Pereira
ISBN : 9780429775550
Genre : Business & Economics
File Size : 50. 36 MB
Format : PDF, ePub, Mobi
Download : 868
Read : 462

Get This Book


Statistical Learning using Neural Networks: A Guide for Statisticians and Data Scientists with Python introduces artificial neural networks starting from the basics and increasingly demanding more effort from readers, who can learn the theory and its applications in statistical methods with concrete Python code examples. It presents a wide range of widely used statistical methodologies, applied in several research areas with Python code examples, which are available online. It is suitable for scientists and developers as well as graduate students. Key Features: Discusses applications in several research areas Covers a wide range of widely used statistical methodologies Includes Python code examples Gives numerous neural network models This book covers fundamental concepts on Neural Networks including Multivariate Statistics Neural Networks, Regression Neural Network Models, Survival Analysis Networks, Time Series Forecasting Networks, Control Chart Networks, and Statistical Inference Results. This book is suitable for both teaching and research. It introduces neural networks and is a guide for outsiders of academia working in data mining and artificial intelligence (AI). This book brings together data analysis from statistics to computer science using neural networks.

Effective Statistical Learning Methods For Actuaries Iii

Author : Michel Denuit
ISBN : 9783030258276
Genre : Business & Economics
File Size : 88. 19 MB
Format : PDF, Docs
Download : 719
Read : 290

Get This Book


This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. It simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous yet accessible. Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting. Requiring only a basic knowledge of statistics, this book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning. This is the third of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.

Artificial Neural Networks And Machine Learning Icann 2011

Author : Timo Honkela
ISBN : 9783642217371
Genre : Computers
File Size : 83. 82 MB
Format : PDF
Download : 948
Read : 576

Get This Book


This two volume set (LNCS 6791 and LNCS 6792) constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.

From Statistics To Neural Networks

Author : Vladimir Cherkassky
ISBN : 3642791212
Genre : Computers
File Size : 36. 97 MB
Format : PDF, ePub, Docs
Download : 514
Read : 1127

Get This Book


The NATO Advanced Study Institute From Statistics to Neural Networks, Theory and Pattern Recognition Applications took place in Les Arcs, Bourg Saint Maurice, France, from June 21 through July 2, 1993. The meeting brought to gether over 100 participants (including 19 invited lecturers) from 20 countries. The invited lecturers whose contributions appear in this volume are: L. Almeida (INESC, Portugal), G. Carpenter (Boston, USA), V. Cherkassky (Minnesota, USA), F. Fogelman Soulie (LRI, France), W. Freeman (Berkeley, USA), J. Friedman (Stanford, USA), F. Girosi (MIT, USA and IRST, Italy), S. Grossberg (Boston, USA), T. Hastie (AT&T, USA), J. Kittler (Surrey, UK), R. Lippmann (MIT Lincoln Lab, USA), J. Moody (OGI, USA), G. Palm (U1m, Germany), B. Ripley (Oxford, UK), R. Tibshirani (Toronto, Canada), H. Wechsler (GMU, USA), C. Wellekens (Eurecom, France) and H. White (San Diego, USA). The ASI consisted of lectures overviewing major aspects of statistical and neural network learning, their links to biological learning and non-linear dynamics (chaos), and real-life examples of pattern recognition applications. As a result of lively interactions between the participants, the following topics emerged as major themes of the meeting: (1) Unified framework for the study of Predictive Learning in Statistics and Artificial Neural Networks (ANNs); (2) Differences and similarities between statistical and ANN methods for non parametric estimation from examples (learning); (3) Fundamental connections between artificial learning systems and biological learning systems.

Statistical Learning With Artificial Neural Network Applied To Health And Environmental Data

Author : Taysseer Sharaf
ISBN : OCLC:927401269
Genre : Artificial intelligence
File Size : 79. 76 MB
Format : PDF, Mobi
Download : 966
Read : 392

Get This Book


The current study illustrates the utilization of artificial neural network in statistical methodology. More specifically in survival analysis and time series analysis, where both holds an important and wide use in many applications in our real life. We start our discussion by utilizing artificial neural network in survival analysis. In literature there exist two important methodology of utilizing artificial neural network in survival analysis based on discrete survival time method. We illustrate the idea of discrete survival time method and show how one can estimate the discrete model using artificial neural network. We present a comparison between the two methodology and update one of them to estimate survival time of competing risks. To fit a model using artificial neural network, you need to take care of two parts; first one is the neural network architecture and second part is the learning algorithm. Usually neural networks are trained using a non-linear optimization algorithm such as quasi Newton Raphson algorithm. Other learning algorithms are base on Bayesian inference. In this study we present a new learning technique by using a mixture of the two available methodologies for using Bayesian inference in training of neural networks. We have performed our analysis using real world data. We have used patients diagnosed with skin cancer in the United states from SEER database, under the supervision of the National Cancer Institute The second part of this dissertation presents the utilization of artificial neural to time series analysis. We present a new method of training recurrent artificial neural network with Hybrid Monte Carlo Sampling and compare our findings with the popular auto-regressive integrated moving average (ARIMA) model. We used the carbon dioxide monthly average emission to apply our comparison, data collected from NOAA.

Neuronale Netze Selbst Programmieren

Author : Tariq Rashid
ISBN : 1492064041
Genre :
File Size : 69. 13 MB
Format : PDF, ePub, Docs
Download : 143
Read : 734

Get This Book


Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Dennoch verstehen nur wenige, wie Neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie Neuronale Netze arbeiten. Dafür brauchen Sie keine tieferen Mathematik-Kenntnisse, denn alle mathematischen Konzepte werden behutsam und mit vielen Illustrationen erläutert. Dann geht es in die Praxis: Sie programmieren Ihr eigenes Neuronales Netz mit Python und bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. Zum Schluss lassen Sie das Netz noch auf einem Raspberry Pi Zero laufen. - Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

An Elementary Introduction To Statistical Learning Theory

Author : Sanjeev Kulkarni
ISBN : 1118023463
Genre : Mathematics
File Size : 56. 29 MB
Format : PDF, ePub
Download : 164
Read : 877

Get This Book


A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference. Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting. Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study. An Elementary Introduction to Statistical Learning Theory is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.

Neural Networks With R

Author : Giuseppe Ciaburro
ISBN : 1788397878
Genre : Computers
File Size : 72. 13 MB
Format : PDF, ePub
Download : 242
Read : 462

Get This Book


Uncover the power of artificial neural networks by implementing them through R code.About This Book* Develop a strong background in neural networks with R, to implement them in your applications* Build smart systems using the power of deep learning* Real-world case studies to illustrate the power of neural network modelsWho This Book Is ForThis book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need!What You Will Learn* Set up R packages for neural networks and deep learning* Understand the core concepts of artificial neural networks* Understand neurons, perceptrons, bias, weights, and activation functions* Implement supervised and unsupervised machine learning in R for neural networks* Predict and classify data automatically using neural networks* Evaluate and fine-tune the models you build.In DetailNeural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning.This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases.By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book.Style and approachA step-by-step guide filled with real-world practical examples.

Statistical Field Theory For Neural Networks

Author : Moritz Helias
ISBN : 9783030464448
Genre : Science
File Size : 87. 75 MB
Format : PDF, Kindle
Download : 873
Read : 428

Get This Book


This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.

Matlab Deep Learning

Author : Phil Kim
ISBN : 1484228448
Genre : Computers
File Size : 32. 1 MB
Format : PDF, Docs
Download : 522
Read : 515

Get This Book


Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

The Nature Of Statistical Learning Theory

Author : Vladimir Vapnik
ISBN : 9781475732641
Genre : Mathematics
File Size : 28. 58 MB
Format : PDF
Download : 588
Read : 668

Get This Book


The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.

Effective Statistical Learning Methods For Actuaries

Author : Michel Denuit
ISBN : 3030258289
Genre : Actuarial science
File Size : 75. 71 MB
Format : PDF, ePub, Docs
Download : 600
Read : 663

Get This Book


Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. The third volume of the trilogy simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous and yet accessible. The authors proceed by successive generalizations, requiring of the reader only a basic knowledge of statistics. Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting. This book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning.

Artificial Neural Networks And Machine Learning Icann 2012

Author : Alessandro Villa
ISBN : 9783642332661
Genre : Computers
File Size : 31. 22 MB
Format : PDF, Mobi
Download : 419
Read : 1199

Get This Book


The two-volume set LNCS 7552 + 7553 constitutes the proceedings of the 22nd International Conference on Artificial Neural Networks, ICANN 2012, held in Lausanne, Switzerland, in September 2012. The 162 papers included in the proceedings were carefully reviewed and selected from 247 submissions. They are organized in topical sections named: theoretical neural computation; information and optimization; from neurons to neuromorphism; spiking dynamics; from single neurons to networks; complex firing patterns; movement and motion; from sensation to perception; object and face recognition; reinforcement learning; bayesian and echo state networks; recurrent neural networks and reservoir computing; coding architectures; interacting with the brain; swarm intelligence and decision-making; mulitlayer perceptrons and kernel networks; training and learning; inference and recognition; support vector machines; self-organizing maps and clustering; clustering, mining and exploratory analysis; bioinformatics; and time weries and forecasting.

Neural Networks And Learning Machines

Author : Simon S. Haykin
ISBN : 9780131471399
Genre : Computers
File Size : 49. 2 MB
Format : PDF, ePub, Mobi
Download : 925
Read : 668

Get This Book


For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Neural Networks and Learning Machines, Third Edition is renowned for its thoroughness and readability. This well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. This is ideal for professional engineers and research scientists. Matlab codes used for the computer experiments in the text are available for download at: http://www.pearsonhighered.com/haykin/ Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently.

Advanced Deep Learning With R

Author : Bharatendra Rai
ISBN : 9781789534986
Genre : Computers
File Size : 58. 1 MB
Format : PDF, Docs
Download : 608
Read : 242

Get This Book


Discover best practices for choosing, building, training, and improving deep learning models using Keras-R, and TensorFlow-R libraries Key Features Implement deep learning algorithms to build AI models with the help of tips and tricks Understand how deep learning models operate using expert techniques Apply reinforcement learning, computer vision, GANs, and NLP using a range of datasets Book Description Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data. Advanced Deep Learning with R will help you understand popular deep learning architectures and their variants in R, along with providing real-life examples for them. This deep learning book starts by covering the essential deep learning techniques and concepts for prediction and classification. You will learn about neural networks, deep learning architectures, and the fundamentals for implementing deep learning with R. The book will also take you through using important deep learning libraries such as Keras-R and TensorFlow-R to implement deep learning algorithms within applications. You will get up to speed with artificial neural networks, recurrent neural networks, convolutional neural networks, long short-term memory networks, and more using advanced examples. Later, you'll discover how to apply generative adversarial networks (GANs) to generate new images; autoencoder neural networks for image dimension reduction, image de-noising and image correction and transfer learning to prepare, define, train, and model a deep neural network. By the end of this book, you will be ready to implement your knowledge and newly acquired skills for applying deep learning algorithms in R through real-world examples. What you will learn Learn how to create binary and multi-class deep neural network models Implement GANs for generating new images Create autoencoder neural networks for image dimension reduction, image de-noising and image correction Implement deep neural networks for performing efficient text classification Learn to define a recurrent convolutional network model for classification in Keras Explore best practices and tips for performance optimization of various deep learning models Who this book is for This book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to develop their skills and knowledge to implement deep learning techniques and algorithms using the power of R. A solid understanding of machine learning and working knowledge of the R programming language are required.

Statistical Field Theory For Neural Networks

Author : Moritz Helias
ISBN : 3030464431
Genre : Science
File Size : 49. 93 MB
Format : PDF
Download : 642
Read : 458

Get This Book


This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.

Algebraic Geometry And Statistical Learning Theory

Author : Sumio Watanabe
ISBN : 9780521864671
Genre : Computers
File Size : 80. 60 MB
Format : PDF, Mobi
Download : 775
Read : 1157

Get This Book


Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.

Pattern Recognition And Neural Networks

Author : Brian D. Ripley
ISBN : 0521717701
Genre : Computers
File Size : 28. 16 MB
Format : PDF, ePub, Mobi
Download : 572
Read : 468

Get This Book


This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.

Advances In Machine Learning And Cybernetics

Author : Daniel S. Yeung
ISBN : 9783540335849
Genre : Computers
File Size : 54. 27 MB
Format : PDF, Kindle
Download : 984
Read : 1216

Get This Book


This book constitutes the thoroughly refereed post-proceedings of the 4th International Conference on Machine Learning and Cybernetics, ICMLC 2005, held in Guangzhou, China in August 2005. The 114 revised full papers of this volume are organized in topical sections on agents and distributed artificial intelligence, control, data mining and knowledge discovery, fuzzy information processing, learning and reasoning, machine learning applications, neural networks and statistical learning methods, pattern recognition, vision and image processing.

Top Download:

Best Books