power electronics and electric drives for traction applications

Download Book Power Electronics And Electric Drives For Traction Applications in PDF format. You can Read Online Power Electronics And Electric Drives For Traction Applications here in PDF, EPUB, Mobi or Docx formats.

Power Electronics And Electric Drives For Traction Applications

Author : Gonzalo Abad
ISBN : 9781118954447
Genre : Technology & Engineering
File Size : 59. 63 MB
Format : PDF, Kindle
Download : 537
Read : 1034

Get This Book

Power Electronics and Electric Drives for Traction Applications offers a practical approach to understanding power electronics applications in transportation systems ranging from railways to electric vehicles and ships. It is an application-oriented book for the design and development of traction systems accompanied by a description of the core technology. The first four introductory chapters describe the common knowledge and background required to understand the preceding chapters. After that, each application-specific chapter: highlights the significant manufacturers involved; provides a historical account of the technological evolution experienced; distinguishes the physics and mechanics; and where possible, analyses a real life example and provides the necessary models and simulation tools, block diagrams and simulation based validations. Key features: Surveys power electronics state-of-the-art in all aspects of traction applications. Presents vital design and development knowledge that is extremely important for the professional community in an original, simple, clear and complete manner. Offers design guidelines for power electronics traction systems in high-speed rail, ships, electric/hybrid vehicles, elevators and more applications. Application-specific chapters co-authored by traction industry expert. Learning supplemented by tutorial sections, case studies and MATLAB/Simulink-based simulations with data from practical systems. A valuable reference for application engineers in traction industry responsible for design and development of products as well as traction industry researchers, developers and graduate students on power electronics and motor drives needing a reference to the application examples.

Utilisation Of Electric Power

Author : N. V. Suryanarayana
ISBN : 8122405460
Genre : Electric machinery
File Size : 53. 85 MB
Format : PDF, ePub
Download : 162
Read : 1148

Get This Book

This Book Is Prepared For Undergraduate Students Of Various Indian Universities And Those Preparing For Associate Membership Examination Of The Institution Of Electrical Engineers (India) As Well The Diploma In Electrical Engineering Examination Of Various Boards Of Technical Education Covering The Subjects Electric Drives And Control And Utilisation Of Electric Energy.The Chapter On Illumination Deals Extensively With The Principles Of The Interior, Factory Lighting And Flood Lighting Schemes As Well As The Features Of Street Lighting. A Section On Photometric Measurement Is Added Along With A Study Of Halogen Lamps And Energy Saving Fluorescent Lamps. The Chapter On Electric Drives And Control Covers The Recent Trends In Electric Traction Using Gto Thyristor Technology. Objective Type Questions Were Incorporated For Self Assessment.

Power Electronics

Author : Jean Pollefliet
ISBN : 9780128146422
Genre : Technology & Engineering
File Size : 57. 54 MB
Format : PDF, Mobi
Download : 967
Read : 473

Get This Book

Power Electronics: Drive Technology and Motion Control explores the principles and practices of power electronics, emphasizing drive technology and motion control. The book covers the fundamentals of electric machine transformers, drive systems, electric traction and renewable energy in an e-Mobility chapter. Supported with illustrations and worked examples, the book covers theory, real life applications, and practical/industrial applications of power electronic drive technology and motion control. This book is intended for engineers, researchers and students who are interested in advanced control of power converters and control specialists who like to explore new applications of control theory. Electronic power control is a coupling of electronic technology and applications from power engineering which rely on one another to provide cleaner electrical power, increased speed, reliability of power and accurate and efficient control of power. Includes illustrated diagrams to cover up-to-date industry applications Features in-depth worked examples to enhance understanding of power electronics theory and related practical applications Covers the fundamentals of electric machine transformers, drive systems, electric traction and renewable energy in an e-Mobility chapter

Control Of Electrical Drives

Author : Werner Leonhard
ISBN : 9783642976469
Genre : Technology & Engineering
File Size : 68. 82 MB
Format : PDF, ePub, Docs
Download : 352
Read : 362

Get This Book

Electrical drives play an important part as electromechanical energy converters in transportation, materials handling and most production processes. This book presents a unified treatment of complete electrical drive systems, including the mechanical parts, electrical machines, and power converters and control. Since it was first published in 1985 the book has found its way onto many desks in industry and universities all over the world. For the second edition the text has been thoroughly revised and updated, with the aim of offering the reader a general view of the field of controlled electrial drives, which are maintaining and extending their importance as the most flexible source of controlled mechanical energy.

Multiphysics Simulation By Design For Electrical Machines Power Electronics And Drives

Author : Dr. Marius Rosu
ISBN : 9781119103448
Genre : Science
File Size : 82. 38 MB
Format : PDF, Kindle
Download : 377
Read : 415

Get This Book

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.

Electric Powertrain

Author : John G. Hayes
ISBN : 9781119063643
Genre : Technology & Engineering
File Size : 43. 94 MB
Format : PDF, ePub, Mobi
Download : 430
Read : 241

Get This Book

The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes, direct to discuss course content or structure.

Control In Power Electronics And Electrical Drives

Author : W. Leonhard
ISBN : 9781483145570
Genre : Technology & Engineering
File Size : 63. 47 MB
Format : PDF, Kindle
Download : 129
Read : 1311

Get This Book

Control in Power Electronics and Electrical Drives contains the proceedings of the Second International Federation of Automatic Control Symposium held in Düsseldorf, Germany, on October 3-5, 1977. The symposium provided a forum for discussing the effects of converter control on the design of electrical machines. Comprised of 102 chapters, this book begins by focusing on control systems employing electronic power converters, along with converter circuits and converter control procedures. The next section deals with the behavior of inverter-fed electrical machines and requirements imposed by converter operation. Topics covered include the status of power thyristors and rectifiers; the dynamic performance of converter-fed synchronous motors; and open loop control of a linear vernier reluctance motor in a stepping mode. Subsequent sections explore converter-fed alternating current and direct current drives; applications of controlled industrial drives; and solid-state energy conversion. A number of methods for analyzing power electronic circuits are discussed and illustrated. This monograph will be of interest to electronics and electrical engineers.

Control In Power Electronics And Electrical Drives

Author : Rudolf Zwicky
ISBN : STANFORD:36105030363019
Genre : Technology & Engineering
File Size : 60. 89 MB
Format : PDF, ePub, Docs
Download : 478
Read : 939

Get This Book

Contains 97 papers which provide a valuable overview of the latest technical innovations in this rapidly expanding field. Areas of development which receive particular attention include the emergence of power switching transistors, the application of microprocessors to regulation and control of static converters and electrical drives, the use of more sophisticated control strategies and the utilization of power electronics in new application fields.

Hybrid Electric Vehicles

Author : Chris Mi
ISBN : 9781118970560
Genre : Technology & Engineering
File Size : 35. 8 MB
Format : PDF, ePub, Mobi
Download : 947
Read : 874

Get This Book

The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters Covers recent developments, breakthroughs, and technologies, including new drive topologies Explains HEV fundamentals and applications Offers a holistic perspective on vehicle electrification Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering.

Advanced Electrical Drives

Author : Rik De Doncker
ISBN : 9400701810
Genre : Technology & Engineering
File Size : 26. 70 MB
Format : PDF, Mobi
Download : 143
Read : 220

Get This Book

Electrical drives convert in a controlled manner, electrical energy into mechanical energy. Electrical drives comprise an electrical machine, i.e. an electro-mechanical energy converter, a power electronic converter, i.e. an electrical-to-electrical converter, and a controller/communication unit. Today, electrical drives are used as propulsion systems in high-speed trains, elevators, escalators, electric ships, electric forklift trucks and electric vehicles. Advanced control algorithms (mostly digitally implemented) allow torque control over a high-bandwidth. Hence, precise motion control can be achieved. Examples are drives in robots, pick-and-place machines, factory automation hardware, etc. Most drives can operate in motoring and generating mode. Wind turbines use electrical drives to convert wind energy into electrical energy. More and more, variable speed drives are used to save energy for example, in air-conditioning units, compressors, blowers, pumps and home appliances. Key to ensure stable operation of a drive in the aforementioned applications are torque control algorithms. In Advanced Electrical Drives, a unique approach is followed to derive model based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for this generalized modeling approach that ultimately leads to the development of universal field-oriented control algorithms. In case of switched reluctance machines, torque observers are proposed to implement direct torque algorithms. From a didactic viewpoint, tutorials are included at the end of each chapter. The reader is encouraged to execute these tutorials to familiarize him or herself with all aspects of drive technology. Hence, Advanced Electrical Drives encourages “learning by doing”. Furthermore, the experienced drive specialist may find the simulation tools useful to design high-performance controllers for all sorts of electrical drives.

Top Download:

Best Books