r-bioinformatics-cookbook

Download Book R Bioinformatics Cookbook in PDF format. You can Read Online R Bioinformatics Cookbook here in PDF, EPUB, Mobi or Docx formats.

R Bioinformatics Cookbook

Author : Dan MacLean
ISBN : 1789950694
Genre : Computers
File Size : 21. 72 MB
Format : PDF, ePub, Docs
Download : 550
Read : 450

Get This Book


Over 60 recipes to model and handle real-life biological data using modern libraries from the R ecosystem Key Features Apply modern R packages to handle biological data using real-world examples Represent biological data with advanced visualizations suitable for research and publications Handle real-world problems in bioinformatics such as next-generation sequencing, metagenomics, and automating analyses Book Description Handling biological data effectively requires an in-depth knowledge of machine learning techniques and computational skills, along with an understanding of how to use tools such as edgeR and DESeq. With the R Bioinformatics Cookbook, you'll explore all this and more, tackling common and not-so-common challenges in the bioinformatics domain using real-world examples. This book will use a recipe-based approach to show you how to perform practical research and analysis in computational biology with R. You will learn how to effectively analyze your data with the latest tools in Bioconductor, ggplot, and tidyverse. The book will guide you through the essential tools in Bioconductor to help you understand and carry out protocols in RNAseq, phylogenetics, genomics, and sequence analysis. As you progress, you will get up to speed with how machine learning techniques can be used in the bioinformatics domain. You will gradually develop key computational skills such as creating reusable workflows in R Markdown and packages for code reuse. By the end of this book, you'll have gained a solid understanding of the most important and widely used techniques in bioinformatic analysis and the tools you need to work with real biological data. What you will learn Employ Bioconductor to determine differential expressions in RNAseq data Run SAMtools and develop pipelines to find single nucleotide polymorphisms (SNPs) and Indels Use ggplot to create and annotate a range of visualizations Query external databases with Ensembl to find functional genomics information Execute large-scale multiple sequence alignment with DECIPHER to perform comparative genomics Use d3.js and Plotly to create dynamic and interactive web graphics Use k-nearest neighbors, support vector machines and random forests to find groups and classify data Who this book is for This book is for bioinformaticians, data analysts, researchers, and R developers who want to address intermediate-to-advanced biological and bioinformatics problems by learning through a recipe-based approach. Working knowledge of R programming language and basic knowledge of bioinformatics are prerequisites.

R Bioinformatics Cookbook

Author : Dan MacLean
ISBN : 9781789955590
Genre : Science
File Size : 84. 4 MB
Format : PDF
Download : 972
Read : 1104

Get This Book


Over 60 recipes to model and handle real-life biological data using modern libraries from the R ecosystem Key FeaturesApply modern R packages to handle biological data using real-world examplesRepresent biological data with advanced visualizations suitable for research and publicationsHandle real-world problems in bioinformatics such as next-generation sequencing, metagenomics, and automating analysesBook Description Handling biological data effectively requires an in-depth knowledge of machine learning techniques and computational skills, along with an understanding of how to use tools such as edgeR and DESeq. With the R Bioinformatics Cookbook, you’ll explore all this and more, tackling common and not-so-common challenges in the bioinformatics domain using real-world examples. This book will use a recipe-based approach to show you how to perform practical research and analysis in computational biology with R. You will learn how to effectively analyze your data with the latest tools in Bioconductor, ggplot, and tidyverse. The book will guide you through the essential tools in Bioconductor to help you understand and carry out protocols in RNAseq, phylogenetics, genomics, and sequence analysis. As you progress, you will get up to speed with how machine learning techniques can be used in the bioinformatics domain. You will gradually develop key computational skills such as creating reusable workflows in R Markdown and packages for code reuse. By the end of this book, you’ll have gained a solid understanding of the most important and widely used techniques in bioinformatic analysis and the tools you need to work with real biological data. What you will learnEmploy Bioconductor to determine differential expressions in RNAseq dataRun SAMtools and develop pipelines to find single nucleotide polymorphisms (SNPs) and IndelsUse ggplot to create and annotate a range of visualizationsQuery external databases with Ensembl to find functional genomics informationExecute large-scale multiple sequence alignment with DECIPHER to perform comparative genomicsUse d3.js and Plotly to create dynamic and interactive web graphicsUse k-nearest neighbors, support vector machines and random forests to find groups and classify dataWho this book is for This book is for bioinformaticians, data analysts, researchers, and R developers who want to address intermediate-to-advanced biological and bioinformatics problems by learning through a recipe-based approach. Working knowledge of R programming language and basic knowledge of bioinformatics are prerequisites.

Bioinformatics With Python Cookbook

Author : Tiago Antao
ISBN : 9781783558650
Genre : Computers
File Size : 67. 4 MB
Format : PDF, Kindle
Download : 945
Read : 654

Get This Book


If you are either a computational biologist or a Python programmer, you will probably relate to the expression "explosive growth, exciting times". Python is arguably the main programming language for big data, and the deluge of data in biology, mostly from genomics and proteomics, makes bioinformatics one of the most exciting fields in data science. Using the hands-on recipes in this book, you'll be able to do practical research and analysis in computational biology with Python. We cover modern, next-generation sequencing libraries and explore real-world examples on how to handle real data. The main focus of the book is the practical application of bioinformatics, but we also cover modern programming techniques and frameworks to deal with the ever increasing deluge of bioinformatics data.

Bioinformatics With R Cookbook

Author : Paurush Praveen
ISBN : 1783283130
Genre : Computers
File Size : 57. 78 MB
Format : PDF, Mobi
Download : 958
Read : 614

Get This Book


This book is an easy-to-follow, stepwise guide to handle real life Bioinformatics problems. Each recipe comes with a detailed explanation to the solution steps. A systematic approach, coupled with lots of illustrations, tips, and tricks will help you as a reader grasp even the trickiest of concepts without difficulty.This book is ideal for computational biologists and bioinformaticians with basic knowledge of R programming, bioinformatics and statistics. If you want to understand various critical concepts needed to develop your computational models in Bioinformatics, then this book is for you. Basic knowledge of R is expected.

Bioinformatics With Python Cookbook Second Edition

Author : Tiago Antao
ISBN : 1789344697
Genre : Computers
File Size : 54. 69 MB
Format : PDF, ePub, Mobi
Download : 834
Read : 525

Get This Book


Discover modern, next-generation sequencing libraries from Python ecosystem to analyze large amounts of biological data Key Features Perform complex bioinformatics analysis using the most important Python libraries and applications Implement next-generation sequencing, metagenomics, automating analysis, population genetics, and more Explore various statistical and machine learning techniques for bioinformatics data analysis Book Description Bioinformatics is an active research field that uses a range of simple-to-advanced computations to extract valuable information from biological data. This book covers next-generation sequencing, genomics, metagenomics, population genetics, phylogenetics, and proteomics. You'll learn modern programming techniques to analyze large amounts of biological data. With the help of real-world examples, you'll convert, analyze, and visualize datasets using various Python tools and libraries. This book will help you get a better understanding of working with a Galaxy server, which is the most widely used bioinformatics web-based pipeline system. This updated edition also includes advanced next-generation sequencing filtering techniques. You'll also explore topics such as SNP discovery using statistical approaches under high-performance computing frameworks such as Dask and Spark. By the end of this book, you'll be able to use and implement modern programming techniques and frameworks to deal with the ever-increasing deluge of bioinformatics data. What you will learn Learn how to process large next-generation sequencing (NGS) datasets Work with genomic dataset using the FASTQ, BAM, and VCF formats Learn to perform sequence comparison and phylogenetic reconstruction Perform complex analysis with protemics data Use Python to interact with Galaxy servers Use High-performance computing techniques with Dask and Spark Visualize protein dataset interactions using Cytoscape Use PCA and Decision Trees, two machine learning techniques, with biological datasets Who this book is for This book is for Data data Scientistsscientists, Bioinformatics bioinformatics analysts, researchers, and Python developers who want to address intermediate-to-advanced biological and bioinformatics problems using a recipe-based approach. Working knowledge of the Python programming language is expected.

Machine Learning With R Cookbook

Author : Yu-Wei, Chiu (David Chiu)
ISBN : 9781783982059
Genre : Computers
File Size : 22. 16 MB
Format : PDF
Download : 953
Read : 438

Get This Book


The R language is a powerful open source functional programming language. At its core, R is a statistical programming language that provides impressive tools to analyze data and create high-level graphics. This book covers the basics of R by setting up a user-friendly programming environment and performing data ETL in R. Data exploration examples are provided that demonstrate how powerful data visualization and machine learning is in discovering hidden relationships. You will then dive into important machine learning topics, including data classification, regression, clustering, association rule mining, and dimension reduction.

Bioinformatics With R Cookbook

Author : Paurush Praveen Sinha
ISBN : 1306902770
Genre :
File Size : 50. 92 MB
Format : PDF, Docs
Download : 500
Read : 1264

Get This Book


This book is an easy-to-follow, stepwise guide to handle real life Bioinformatics problems. Each recipe comes with a detailed explanation to the solution steps. A systematic approach, coupled with lots of illustrations, tips, and tricks will help you as a reader grasp even the trickiest of concepts without difficulty.This book is ideal for computational biologists and bioinformaticians with basic knowledge of R programming, bioinformatics and statistics. If you want to understand various critical concepts needed to develop your computational models in Bioinformatics, then this book is for you. Basic knowledge of R is expected.

Medical Statistics For Cancer Studies

Author : Trevor F. Cox
ISBN : 9781000601152
Genre : Mathematics
File Size : 38. 3 MB
Format : PDF, ePub
Download : 610
Read : 1206

Get This Book


Cancer is a dreaded disease. One in two people will be diagnosed with cancer within their lifetime. Medical Statistics for Cancer Studies shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It gives some background in cancer biology and genetics, followed by detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics. It includes lots of examples using real data from the author’s many years of experience working in a cancer clinical trials unit. Features: A broad and accessible overview of statistical methods in cancer research Necessary background in cancer biology and genetics Details of statistical methodology with minimal algebra Many examples using real data from cancer clinical trials Appendix giving statistics revision.

Bioinformatics And Computational Biology

Author : Basant K. Tiwary
ISBN : 9789811642418
Genre : Medical
File Size : 63. 98 MB
Format : PDF, ePub, Docs
Download : 933
Read : 603

Get This Book


This textbook introduces fundamental concepts of bioinformatics and computational biology to the students and researchers in biology, medicine, veterinary science, agriculture, and bioengineering . The respective chapters provide detailed information on biological databases, sequence alignment, molecular evolution, next-generation sequencing, systems biology, and statistical computing using R. The book also presents a case-based discussion on clinical, veterinary, agricultural bioinformatics, and computational bioengineering for application-based learning in the respective fields. Further, it offers readers guidance on reconstructing and analysing biological networks and highlights computational methods used in systems medicine and genome-wide association mapping of diseases. Given its scope, this textbook offers an essential introductory book on bioinformatics and computational biology for undergraduate and graduate students in the life sciences, botany, zoology, physiology, biotechnology, bioinformatics, and genomic science as well as systems biology, bioengineering and the agricultural, and veterinary sciences.

Introduction To Bioinformatics With R

Author : Edward R. Curry
ISBN : 1138495719
Genre : Bioinformatics
File Size : 76. 74 MB
Format : PDF, ePub
Download : 576
Read : 657

Get This Book


"This book has been developed over years of training biological scientists and clinicians to analyse the large datasets available in their cancer research projects. Through the entire book, theoretical explanations are presented alongside step-by-step instructions for carrying out a number of widely-applicable data analysis tasks using freely available software. This book guides the reader through the basic principles of exploratory analysis and hypothesis testing in high-dimensional datasets, and the practicalities of installing statistical computing software and using this to handle different types of data tables"--

Bioinformatics With R Cookbook

Author : Paurush Praveen Sinha
ISBN : OCLC:1089444503
Genre :
File Size : 54. 53 MB
Format : PDF, Kindle
Download : 322
Read : 621

Get This Book



R For Data Science Cookbook

Author : Yu-Wei, Chiu (David Chiu)
ISBN : 9781784392048
Genre : Computers
File Size : 22. 23 MB
Format : PDF, ePub
Download : 716
Read : 575

Get This Book


Over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniques About This Book Gain insight into how data scientists collect, process, analyze, and visualize data using some of the most popular R packages Understand how to apply useful data analysis techniques in R for real-world applications An easy-to-follow guide to make the life of data scientist easier with the problems faced while performing data analysis Who This Book Is For This book is for those who are already familiar with the basic operation of R, but want to learn how to efficiently and effectively analyze real-world data problems using practical R packages. What You Will Learn Get to know the functional characteristics of R language Extract, transform, and load data from heterogeneous sources Understand how easily R can confront probability and statistics problems Get simple R instructions to quickly organize and manipulate large datasets Create professional data visualizations and interactive reports Predict user purchase behavior by adopting a classification approach Implement data mining techniques to discover items that are frequently purchased together Group similar text documents by using various clustering methods In Detail This cookbook offers a range of data analysis samples in simple and straightforward R code, providing step-by-step resources and time-saving methods to help you solve data problems efficiently. The first section deals with how to create R functions to avoid the unnecessary duplication of code. You will learn how to prepare, process, and perform sophisticated ETL for heterogeneous data sources with R packages. An example of data manipulation is provided, illustrating how to use the “dplyr” and “data.table” packages to efficiently process larger data structures. We also focus on “ggplot2” and show you how to create advanced figures for data exploration. In addition, you will learn how to build an interactive report using the “ggvis” package. Later chapters offer insight into time series analysis on financial data, while there is detailed information on the hot topic of machine learning, including data classification, regression, clustering, association rule mining, and dimension reduction. By the end of this book, you will understand how to resolve issues and will be able to comfortably offer solutions to problems encountered while performing data analysis. Style and approach This easy-to-follow guide is full of hands-on examples of data analysis with R. Each topic is fully explained beginning with the core concept, followed by step-by-step practical examples, and concluding with detailed explanations of each concept used.

Python For Bioinformatics

Author : Sebastian Bassi
ISBN : 9781584889304
Genre : Science
File Size : 32. 89 MB
Format : PDF
Download : 186
Read : 1120

Get This Book


Programming knowledge is often necessary for finding a solution to a biological problem. Based on the author’s experience working for an agricultural biotechnology company, Python for Bioinformatics helps scientists solve their biological problems by helping them understand the basics of programming. Requiring no prior knowledge of programming-related concepts, the book focuses on the easy-to-use, yet powerful, Python computer language. The book begins with a very basic introduction that teaches the principles of programming. It then introduces the Biopython package, which can be useful in solving life science problems. The next section covers sophisticated tools for bioinformatics, including relational database management systems and XML. The last part illustrates applications with source code, such as sequence manipulation, filtering vector contamination, calculating DNA melting temperature, parsing a genbank file, inferring splicing sites, and more. The appendices provide a wealth of supplementary information, including instructions for installing Python and Biopython and a Python language and style guide. By incorporating examples in biology as well as code fragments throughout, the author places a special emphasis on practice, encouraging readers to experiment with the code. He shows how to use Python and the Biopython package for building web applications, genomic annotation, data manipulation, and countless other applications.

Bioinformatics Data Skills

Author : Vince Buffalo
ISBN : 9781449367510
Genre : Computers
File Size : 31. 83 MB
Format : PDF, Mobi
Download : 392
Read : 934

Get This Book


Learn the data skills necessary for turning large sequencing datasets into reproducible and robust biological findings. With this practical guide, you’ll learn how to use freely available open source tools to extract meaning from large complex biological data sets. At no other point in human history has our ability to understand life’s complexities been so dependent on our skills to work with and analyze data. This intermediate-level book teaches the general computational and data skills you need to analyze biological data. If you have experience with a scripting language like Python, you’re ready to get started. Go from handling small problems with messy scripts to tackling large problems with clever methods and tools Process bioinformatics data with powerful Unix pipelines and data tools Learn how to use exploratory data analysis techniques in the R language Use efficient methods to work with genomic range data and range operations Work with common genomics data file formats like FASTA, FASTQ, SAM, and BAM Manage your bioinformatics project with the Git version control system Tackle tedious data processing tasks with with Bash scripts and Makefiles

Machine Learning With R Cookbook

Author : AshishSingh Bhatia
ISBN : 9781787287808
Genre : Computers
File Size : 64. 71 MB
Format : PDF, Mobi
Download : 166
Read : 1196

Get This Book


Explore over 110 recipes to analyze data and build predictive models with simple and easy-to-use R code About This Book Apply R to simplify predictive modeling with short and simple code Use machine learning to solve problems ranging from small to big data Build a training and testing dataset, applying different classification methods. Who This Book Is For This book is for data science professionals, data analysts, or people who have used R for data analysis and machine learning who now wish to become the go-to person for machine learning with R. Those who wish to improve the efficiency of their machine learning models and need to work with different kinds of data set will find this book very insightful. What You Will Learn Create and inspect transaction datasets and perform association analysis with the Apriori algorithm Visualize patterns and associations using a range of graphs and find frequent item-sets using the Eclat algorithm Compare differences between each regression method to discover how they solve problems Detect and impute missing values in air quality data Predict possible churn users with the classification approach Plot the autocorrelation function with time series analysis Use the Cox proportional hazards model for survival analysis Implement the clustering method to segment customer data Compress images with the dimension reduction method Incorporate R and Hadoop to solve machine learning problems on big data In Detail Big data has become a popular buzzword across many industries. An increasing number of people have been exposed to the term and are looking at how to leverage big data in their own businesses, to improve sales and profitability. However, collecting, aggregating, and visualizing data is just one part of the equation. Being able to extract useful information from data is another task, and a much more challenging one. Machine Learning with R Cookbook, Second Edition uses a practical approach to teach you how to perform machine learning with R. Each chapter is divided into several simple recipes. Through the step-by-step instructions provided in each recipe, you will be able to construct a predictive model by using a variety of machine learning packages. In this book, you will first learn to set up the R environment and use simple R commands to explore data. The next topic covers how to perform statistical analysis with machine learning analysis and assess created models, covered in detail later on in the book. You'll also learn how to integrate R and Hadoop to create a big data analysis platform. The detailed illustrations provide all the information required to start applying machine learning to individual projects. With Machine Learning with R Cookbook, machine learning has never been easier. Style and approach This is an easy-to-follow guide packed with hands-on examples of machine learning tasks. Each topic includes step-by-step instructions on tackling difficulties faced when applying R to machine learning.

R Cookbook

Author :
ISBN : 178439081X
Genre :
File Size : 36. 6 MB
Format : PDF, ePub
Download : 435
Read : 860

Get This Book



Building Bioinformatics Solutions

Author : Conrad Bessant
ISBN : 9780191643200
Genre : Science
File Size : 46. 79 MB
Format : PDF
Download : 639
Read : 251

Get This Book


Bioinformatics encompasses a broad and ever-changing range of activities involved with the management and analysis of data from molecular biology experiments. Despite the diversity of activities and applications, the basic methodology and core tools needed to tackle bioinformatics problems is common to many projects. This unique book provides an invaluable introduction to three of the main tools used in the development of bioinformatics software - Perl, R and MySQL - and explains how these can be used together to tackle the complex data-driven challenges that typify modern biology. These industry standard open source tools form the core of many bioinformatics projects, both in academia and industry. The methodologies introduced are platform independent, and all the examples that feature have been tested on Windows, Linux and Mac OS. Building Bioinformatics Solutions is suitable for graduate students and researchers in the life sciences who wish to automate analyses or create their own databases and web-based tools. No prior knowledge of software development is assumed. Having worked through the book, the reader should have the necessary core skills to develop computational solutions for their specific research programmes. The book will also help the reader overcome the inertia associated with penetrating this field, and provide them with the confidence and understanding required to go on to develop more advanced bioinformatics skills.

R Cookbook

Author : JD Long
ISBN : 9781492040637
Genre : Computers
File Size : 84. 48 MB
Format : PDF, ePub, Mobi
Download : 423
Read : 840

Get This Book


Perform data analysis with R quickly and efficiently with more than 275 practical recipes in this expanded second edition. The R language provides everything you need to do statistical work, but its structure can be difficult to master. These task-oriented recipes make you productive with R immediately. Solutions range from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem and includes a discussion that explains the solution and provides insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an intermediate user, this book will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform basic functions Simplify data input and output Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data

Systems Medicine

Author :
ISBN : 9780128160787
Genre : Science
File Size : 34. 10 MB
Format : PDF
Download : 486
Read : 246

Get This Book


Technological advances in generated molecular and cell biological data are transforming biomedical research. Sequencing, multi-omics and imaging technologies are likely to have deep impact on the future of medical practice. In parallel to technological developments, methodologies to gather, integrate, visualize and analyze heterogeneous and large-scale data sets are needed to develop new approaches for diagnosis, prognosis and therapy. Systems Medicine: Integrative, Qualitative and Computational Approaches is an innovative, interdisciplinary and integrative approach that extends the concept of systems biology and the unprecedented insights that computational methods and mathematical modeling offer of the interactions and network behavior of complex biological systems, to novel clinically relevant applications for the design of more successful prognostic, diagnostic and therapeutic approaches. This 3 volume work features 132 entries from renowned experts in the fields and covers the tools, methods, algorithms and data analysis workflows used for integrating and analyzing multi-dimensional data routinely generated in clinical settings with the aim of providing medical practitioners with robust clinical decision support systems. Importantly the work delves into the applications of systems medicine in areas such as tumor systems biology, metabolic and cardiovascular diseases as well as immunology and infectious diseases amongst others. This is a fundamental resource for biomedical students and researchers as well as medical practitioners who need to need to adopt advances in computational tools and methods into the clinical practice. Encyclopedic coverage: ‘one-stop’ resource for access to information written by world-leading scholars in the field of Systems Biology and Systems Medicine, with easy cross-referencing of related articles to promote understanding and further research Authoritative: the whole work is authored and edited by recognized experts in the field, with a range of different expertise, ensuring a high quality standard Digitally innovative: Hyperlinked references and further readings, cross-references and diagrams/images will allow readers to easily navigate a wealth of information

R Cookbook

Author : Paul Teetor
ISBN : 9781449307370
Genre : Computers
File Size : 57. 90 MB
Format : PDF, ePub, Docs
Download : 249
Read : 1143

Get This Book


With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author

Top Download:

Best Books