simple-predictive-analytics

Download Book Simple Predictive Analytics in PDF format. You can Read Online Simple Predictive Analytics here in PDF, EPUB, Mobi or Docx formats.

Simple Predictive Analytics

Author : Curtis Seare
ISBN : 1795224738
Genre : Computers
File Size : 52. 59 MB
Format : PDF, ePub, Docs
Download : 577
Read : 776

Get This Book


This book will give you the critical information you need to create, use, and validate simple predictive models, and it will suggest the types of real-world business problems you can solve with those models. It is designed to be as simple as possible, providing basic, practical, and immediately applicable information for business users new to the world of predictive modeling. In summary: An introduction to and some fundamentals for good analysis A process outline to make analysis quick and effective A description of some of the most used predictive models and methods, and how they relate to business questions Comprehensive "How To" sections, including step-by-step Excel tutorials and common pitfalls to avoid Our approach is as follows: First, introduce analysis fundamentals. These are the basics of doing good and accurate analysis, and it will be important to keep these principles in mind as you create predictive models. Second, explain the process that will allow you to follow some easy, predefined steps to creating your own predictive models. This is a "big-picture" process flow meant to give you a basic procedure to follow no matter what type of predictive model you need to create. Last, this guide gives you an in-depth look into various predictive modeling techniques, organized according to the type of data you have and the type of questions you're trying to answer. This section makes up the bulk of the book, and the explanation of each model tells you what the predictive model looks like, what it can be used for, the assumptions necessary to use the model, a process to follow to create it (including step-by-step instructions in Excel), an explanation of some common errors to watch for, and a section on analyzing your results. The modeling process you will learn is as follows: 1. Choose a predictive model according to the business question. 2. Check to see if all the conditions for the model are met. 3. Carry out the analysis. 4. Check for statistical significance and fit. 5. Validate the predictive model. 6. Refine the predictive model. The basic models we go over in this text: General Regression (linear, multivariate, exponential, logarithmic, polynomial, time series) Logistic Regression ANOVA (t-test, one and two-way ANOVA) Chi-Square These models cover four common prediction cases you will encounter: Predict a numerical outcome with numerical explanatory variables Predict a yes or no outcome with numerical explanatory variables Predict a numerical outcome with categorical explanatory variables Predict a categorical outcome with categorical explanatory variables What you will not get in this book: Complex statistical explanations Complex math Complex predictive models (read: machine learning is not covered) Python, R, or other coding languages used for modeling What you will get in this book: Simple statistics Simple math Simple predictive models Modeling procedures using Excel Suggestions on how to apply these to real business situations Also, this book may or may not mention wombats.

Predictive Analytics

Author : Ali Benoit
ISBN : 9798705657780
Genre :
File Size : 70. 90 MB
Format : PDF, ePub
Download : 702
Read : 424

Get This Book


Learn to apply predictive analytics and business intelligence to solve real-world business problems. In summary, this book includes: - An introduction to and some fundamentals for good analysis - A process outline to make analysis quick and effective - A description of some of the most used predictive models and methods, and how they relate to business questions - Comprehensive "How To" sections, including step-by-step Excel tutorials and common pitfalls to avoid

Predictive Analytics

Author : Gwyn Branes
ISBN : 9798705676545
Genre :
File Size : 89. 9 MB
Format : PDF, ePub
Download : 279
Read : 699

Get This Book


Learn to apply predictive analytics and business intelligence to solve real-world business problems. In summary, this book includes: - An introduction to and some fundamentals for good analysis - A process outline to make analysis quick and effective - A description of some of the most used predictive models and methods, and how they relate to business questions - Comprehensive "How To" sections, including step-by-step Excel tutorials and common pitfalls to avoid

Predictive Analytics And Data Mining

Author : Vijay Kotu
ISBN : 9780128016503
Genre : Computers
File Size : 69. 52 MB
Format : PDF
Download : 714
Read : 724

Get This Book


Put Predictive Analytics into Action Learn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining. You’ll be able to: 1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process. 2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases. 3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

Modeling Techniques In Predictive Analytics

Author : Thomas W. Miller
ISBN : 9780133886191
Genre : Computers
File Size : 41. 25 MB
Format : PDF, ePub, Mobi
Download : 573
Read : 614

Get This Book


To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

R Predictive Analysis

Author : Tony Fischetti
ISBN : 9781788290852
Genre : Computers
File Size : 75. 9 MB
Format : PDF, ePub
Download : 674
Read : 566

Get This Book


Master the art of predictive modeling About This Book Load, wrangle, and analyze your data using the world's most powerful statistical programming language Familiarize yourself with the most common data mining tools of R, such as k-means, hierarchical regression, linear regression, Naive Bayes, decision trees, text mining and so on. We emphasize important concepts, such as the bias-variance trade-off and over-fitting, which are pervasive in predictive modeling Who This Book Is For If you work with data and want to become an expert in predictive analysis and modeling, then this Learning Path will serve you well. It is intended for budding and seasoned practitioners of predictive modeling alike. You should have basic knowledge of the use of R, although it's not necessary to put this Learning Path to great use. What You Will Learn Get to know the basics of R's syntax and major data structures Write functions, load data, and install packages Use different data sources in R and know how to interface with databases, and request and load JSON and XML Identify the challenges and apply your knowledge about data analysis in R to imperfect real-world data Predict the future with reasonably simple algorithms Understand key data visualization and predictive analytic skills using R Understand the language of models and the predictive modeling process In Detail Predictive analytics is a field that uses data to build models that predict a future outcome of interest. It can be applied to a range of business strategies and has been a key player in search advertising and recommendation engines. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions in the real world. This Learning Path will provide you with all the steps you need to master the art of predictive modeling with R. We start with an introduction to data analysis with R, and then gradually you'll get your feet wet with predictive modeling. You will get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. You will be able to solve the difficulties relating to performing data analysis in practice and find solutions to working with “messy data”, large data, communicating results, and facilitating reproducibility. You will then perform key predictive analytics tasks using R, such as train and test predictive models for classification and regression tasks, score new data sets and so on. By the end of this Learning Path, you will have explored and tested the most popular modeling techniques in use on real-world data sets and mastered a diverse range of techniques in predictive analytics. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Data Analysis with R, Tony Fischetti Learning Predictive Analytics with R, Eric Mayor Mastering Predictive Analytics with R, Rui Miguel Forte Style and approach Learn data analysis using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach. This is a practical course, which analyzes compelling data about life, health, and death with the help of tutorials. It offers you a useful way of interpreting the data that's specific to this course, but that can also be applied to any other data. This course is designed to be both a guide and a reference for moving beyond the basics of predictive modeling.

Practical Predictive Analytics And Decisioning Systems For Medicine

Author : Linda Miner
ISBN : 9780124116405
Genre : Computers
File Size : 25. 26 MB
Format : PDF, ePub
Download : 217
Read : 197

Get This Book


With the advent of electronic medical records years ago and the increasing capabilities of computers, our healthcare systems are sitting on growing mountains of data. Not only does the data grow from patient volume but the type of data we store is also growing exponentially. Practical Predictive Analytics and Decisioning Systems for Medicine provides research tools to analyze these large amounts of data and addresses some of the most pressing issues and challenges where data integrity is compromised: patient safety, patient communication, and patient information. Through the use of predictive analytic models and applications, this book is an invaluable resource to predict more accurate outcomes to help improve quality care in the healthcare and medical industries in the most cost–efficient manner. Practical Predictive Analytics and Decisioning Systems for Medicine provides the basics of predictive analytics for those new to the area and focuses on general philosophy and activities in the healthcare and medical system. It explains why predictive models are important, and how they can be applied to the predictive analysis process in order to solve real industry problems. Researchers need this valuable resource to improve data analysis skills and make more accurate and cost-effective decisions. Includes models and applications of predictive analytics why they are important and how they can be used in healthcare and medical research Provides real world step-by-step tutorials to help beginners understand how the predictive analytic processes works and to successfully do the computations Demonstrates methods to help sort through data to make better observations and allow you to make better predictions

Predictive Analytics With Microsoft Azure Machine Learning 2nd Edition

Author : Valentine Fontama
ISBN : 9781484212004
Genre : Computers
File Size : 64. 89 MB
Format : PDF, ePub, Mobi
Download : 156
Read : 635

Get This Book


Predictive Analytics with Microsoft Azure Machine Learning, Second Edition is a practical tutorial introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book provides a thorough overview of the Microsoft Azure Machine Learning service released for general availability on February 18th, 2015 with practical guidance for building recommenders, propensity models, and churn and predictive maintenance models. The authors use task oriented descriptions and concrete end-to-end examples to ensure that the reader can immediately begin using this new service. The book describes all aspects of the service from data ingress to applying machine learning, evaluating the models, and deploying them as web services. Learn how you can quickly build and deploy sophisticated predictive models with the new Azure Machine Learning from Microsoft. What’s New in the Second Edition? Five new chapters have been added with practical detailed coverage of: Python Integration – a new feature announced February 2015 Data preparation and feature selection Data visualization with Power BI Recommendation engines Selling your models on Azure Marketplace

Predictive Analytics With Microsoft Azure Machine Learning

Author : Valentine Fontama
ISBN : 9781484204450
Genre : Computers
File Size : 60. 41 MB
Format : PDF, Docs
Download : 742
Read : 1076

Get This Book


Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft.

Learning Predictive Analytics With Python

Author : Ashish Kumar
ISBN : 9781783983278
Genre : Computers
File Size : 88. 27 MB
Format : PDF, ePub, Docs
Download : 325
Read : 1291

Get This Book


Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python About This Book A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices Get to grips with the basics of Predictive Analytics with Python Learn how to use the popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering Who This Book Is For If you wish to learn how to implement Predictive Analytics algorithms using Python libraries, then this is the book for you. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about Predictive Analytics algorithms, this book will also help you. The book will be beneficial to and can be read by any Data Science enthusiasts. Some familiarity with Python will be useful to get the most out of this book, but it is certainly not a prerequisite. What You Will Learn Understand the statistical and mathematical concepts behind Predictive Analytics algorithms and implement Predictive Analytics algorithms using Python libraries Analyze the result parameters arising from the implementation of Predictive Analytics algorithms Write Python modules/functions from scratch to execute segments or the whole of these algorithms Recognize and mitigate various contingencies and issues related to the implementation of Predictive Analytics algorithms Get to know various methods of importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and numpy Create dummy datasets and simple mathematical simulations using the Python numpy and pandas libraries Understand the best practices while handling datasets in Python and creating predictive models out of them In Detail Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. Style and approach All the concepts in this book been explained and illustrated using a dataset, and in a step-by-step manner. The Python code snippet to implement a method or concept is followed by the output, such as charts, dataset heads, pictures, and so on. The statistical concepts are explained in detail wherever required.

Organizational Productivity And Performance Measurements Using Predictive Modeling And Analytics

Author : Tavana, Madjid
ISBN : 9781522506553
Genre : Business & Economics
File Size : 59. 41 MB
Format : PDF, Mobi
Download : 962
Read : 725

Get This Book


Businesses are collecting massive amounts of data every day as a way to better understand their processes, competition, and the markets they serve. This data can be used to increase organizational productivity and performance; however, is essential that organizations collecting large data sets have the tools available to them to fully understand the data they are collecting. Organizational Productivity and Performance Measurements Using Predictive Modeling and Analytics takes a critical look at methods for enhancing an organization’s operations and day-to-day activities through the effective use of data. Focusing on a variety of applications of predictive analytics within organizations of all types, this critical publication is an essential resource for business managers, data scientists, graduate-level students, and researchers.

Healthcare Analytics Made Simple

Author : Vikas (Vik) Kumar
ISBN : 9781787283220
Genre : Computers
File Size : 26. 24 MB
Format : PDF, ePub
Download : 622
Read : 1124

Get This Book


Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare.

Predictive Analytics Using Rattle And Qlik Sense

Author : Ferran Garcia Pagans
ISBN : 9781784390785
Genre : Computers
File Size : 31. 62 MB
Format : PDF, Mobi
Download : 576
Read : 631

Get This Book


Qlik Sense Desktop, the personal and free version of Qlik Sense, is a powerful tool for business analysts to analyze data and create useful data applications. Rattle, developed in R, is a GUI used for data mining and complements Qlik Sense Desktop very well. By combining Rattle and Qlik Sense Desktop, a business user can learn how to apply predictive analytics to create real-world data applications. The objective is to use Qlik Sense to analyze data and complement it with predictive analytics using Rattle. This book will introduce you to basic predictive analysis techniques using Rattle and basic data visualizations concepts using Qlik Sense Desktop. You will start by setting up Qlik Sense Desktop, R, and Rattle and learn the basic of these tools. Then this book will examine the data and make it ready to be analyzed. After that, you will get to know the key concepts of predictive analytics, by building simple models with Rattle and creating visualizations with Qlik Sense Desktop. Finally, the book will show you the basics of data visualization and will help you to create your first data application and dashboard.

Learning Predictive Analytics With R

Author : Eric Mayor
ISBN : 9781782169369
Genre : Computers
File Size : 20. 48 MB
Format : PDF, ePub
Download : 286
Read : 1067

Get This Book


Get to grips with key data visualization and predictive analytic skills using R About This Book Acquire predictive analytic skills using various tools of R Make predictions about future events by discovering valuable information from data using R Comprehensible guidelines that focus on predictive model design with real-world data Who This Book Is For If you are a statistician, chief information officer, data scientist, ML engineer, ML practitioner, quantitative analyst, and student of machine learning, this is the book for you. You should have basic knowledge of the use of R. Readers without previous experience of programming in R will also be able to use the tools in the book. What You Will Learn Customize R by installing and loading new packages Explore the structure of data using clustering algorithms Turn unstructured text into ordered data, and acquire knowledge from the data Classify your observations using Naive Bayes, k-NN, and decision trees Reduce the dimensionality of your data using principal component analysis Discover association rules using Apriori Understand how statistical distributions can help retrieve information from data using correlations, linear regression, and multilevel regression Use PMML to deploy the models generated in R In Detail R is statistical software that is used for data analysis. There are two main types of learning from data: unsupervised learning, where the structure of data is extracted automatically; and supervised learning, where a labeled part of the data is used to learn the relationship or scores in a target attribute. As important information is often hidden in a lot of data, R helps to extract that information with its many standard and cutting-edge statistical functions. This book is packed with easy-to-follow guidelines that explain the workings of the many key data mining tools of R, which are used to discover knowledge from your data. You will learn how to perform key predictive analytics tasks using R, such as train and test predictive models for classification and regression tasks, score new data sets and so on. All chapters will guide you in acquiring the skills in a practical way. Most chapters also include a theoretical introduction that will sharpen your understanding of the subject matter and invite you to go further. The book familiarizes you with the most common data mining tools of R, such as k-means, hierarchical regression, linear regression, association rules, principal component analysis, multilevel modeling, k-NN, Naive Bayes, decision trees, and text mining. It also provides a description of visualization techniques using the basic visualization tools of R as well as lattice for visualizing patterns in data organized in groups. This book is invaluable for anyone fascinated by the data mining opportunities offered by GNU R and its packages. Style and approach This is a practical book, which analyzes compelling data about life, health, and death with the help of tutorials. It offers you a useful way of interpreting the data that's specific to this book, but that can also be applied to any other data.

Statistical And Machine Learning Data Mining

Author : Bruce Ratner
ISBN : 9781498797610
Genre : Computers
File Size : 68. 77 MB
Format : PDF, ePub, Mobi
Download : 295
Read : 1170

Get This Book


Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Business Analytics Using R A Practical Approach

Author : Umesh R Hodeghatta
ISBN : 9781484225141
Genre : Computers
File Size : 29. 30 MB
Format : PDF, ePub, Docs
Download : 253
Read : 348

Get This Book


Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals.

Become A Python Data Analyst

Author : Alvaro Fuentes
ISBN : 9781789534405
Genre : Computers
File Size : 88. 31 MB
Format : PDF, ePub, Docs
Download : 178
Read : 998

Get This Book


Enhance your data analysis and predictive modeling skills using popular Python tools Key Features Cover all fundamental libraries for operation and manipulation of Python for data analysis Implement real-world datasets to perform predictive analytics with Python Access modern data analysis techniques and detailed code with scikit-learn and SciPy Book Description Python is one of the most common and popular languages preferred by leading data analysts and statisticians for working with massive datasets and complex data visualizations. Become a Python Data Analyst introduces Python’s most essential tools and libraries necessary to work with the data analysis process, right from preparing data to performing simple statistical analyses and creating meaningful data visualizations. In this book, we will cover Python libraries such as NumPy, pandas, matplotlib, seaborn, SciPy, and scikit-learn, and apply them in practical data analysis and statistics examples. As you make your way through the chapters, you will learn to efficiently use the Jupyter Notebook to operate and manipulate data using NumPy and the pandas library. In the concluding chapters, you will gain experience in building simple predictive models and carrying out statistical computation and analysis using rich Python tools and proven data analysis techniques. By the end of this book, you will have hands-on experience performing data analysis with Python. What you will learn Explore important Python libraries and learn to install Anaconda distribution Understand the basics of NumPy Produce informative and useful visualizations for analyzing data Perform common statistical calculations Build predictive models and understand the principles of predictive analytics Who this book is for Become a Python Data Analyst is for entry-level data analysts, data engineers, and BI professionals who want to make complete use of Python tools for performing efficient data analysis. Prior knowledge of Python programming is necessary to understand the concepts covered in this book

Machine Learning In Python

Author : Michael Bowles
ISBN : 9781118961742
Genre : Computers
File Size : 47. 2 MB
Format : PDF, Kindle
Download : 314
Read : 846

Get This Book


This book shows readers how they can successfully analyze data using only two core machine learning algorithms---and how to do so using the popular Python programming language. These algorithms deal with common scenarios faced by all data analysts and data scientists. This book focuses on two algorithm families (linear methods and ensemble methods) that effectively predict outcomes. This type of problem covers a multitude of use cases (what ad to place on a web page, predicting prices in securities markets, detecting credit card fraud, etc.). The focus on two families gives enough room for full descriptions of the mechanisms at work in the algorithms. Then the code examples serve to illustrate the workings of the machinery with specific hackable code. The author will explain in simple terms, using no complex math, how these algorithms work, and will then show how to apply them in Python. He will also provide advice on how to select from among these algorithms, and will show how to prepare the data, and how to use the trained models in practice. The author begins with an overview of the two core algorithms, explaining the types of problems solved by each one. He then introduces a core set of Python programming techniques that can be used to apply these algorithms. The author shows various techniques for building predictive models that solve a range of problems, from simple to complex; he also shows how to measure the performance of each model to ensure you use the right one. The following chapters provide a deep dive into each of the two algorithms: penalized linear regression and ensemble methods. Chapters will show how to apply each algorithm in Python. Readers can directly use the sample code to build their own solutions.

Predictive Data Mining Models

Author : David L. Olson
ISBN : 9789811396649
Genre : Business & Economics
File Size : 65. 89 MB
Format : PDF, ePub, Mobi
Download : 302
Read : 305

Get This Book


This book provides an overview of predictive methods demonstrated by open source software modeling with Rattle (R’) and WEKA. Knowledge management involves application of human knowledge (epistemology) with the technological advances of our current society (computer systems) and big data, both in terms of collecting data and in analyzing it. We see three types of analytic tools. Descriptive analytics focus on reports of what has happened. Predictive analytics extend statistical and/or artificial intelligence to provide forecasting capability. It also includes classification modeling. Prescriptive analytics applies quantitative models to optimize systems, or at least to identify improved systems. Data mining includes descriptive and predictive modeling. Operations research includes all three. This book focuses on prescriptive analytics. The book seeks to provide simple explanations and demonstration of some descriptive tools. This second edition provides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic data types. Chapter 3 covers fundamentals time series modeling tools, and Chapter 4 provides demonstration of multiple regression modeling. Chapter 5 demonstrates regression tree modeling. Chapter 6 presents autoregressive/integrated/moving average models, as well as GARCH models. Chapter 7 covers the set of data mining tools used in classification, to include special variants support vector machines, random forests, and boosting. Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.

Analytics

Author : Daniel Covington
ISBN : 0359828523
Genre : Business & Economics
File Size : 73. 36 MB
Format : PDF
Download : 222
Read : 889

Get This Book


SO MANY PEOPLE DREAM OF BECOMING THEIR OWN BOSS OR SUCCEEDING IN THEIR CHOSEN PROFESSION, AND WITH THE RESOURCES AVAILABLE TODAY, MORE ENTREPRENEURS AND PROFESSIONALS ARE ACHIEVING GREAT SUCCESS! HOWEVER, SUCCESS SHOULD BE DEFINED FOR THE LONG TERM, AND AS OPPORTUNITIES START TO GROW, SO DOES THE COMPETITION. Getting your business up and running or starting on your career path is one thing, but have a sustainable business or career is completely another. Many people make the mistake of making plans but having no follow-through. This is where analytics comes in. DonÕt you wish to have the power to know what your target consumers are thinking? WonÕt you want to have a preview of what future trends to expect in the market you are in? Well, this book is just the one you need. This book will teach you, in simple and easy-to-understand terms, how to take advantage of data from your daily operations and make such data a powerful tool that can influence how well your business does over time.

Top Download:

Best Books