slicing the truth on the computable and reverse mathematics of combinatorial principles lecture notes series institute for mathematical sciences national university of singapore

Download Book Slicing The Truth On The Computable And Reverse Mathematics Of Combinatorial Principles Lecture Notes Series Institute For Mathematical Sciences National University Of Singapore in PDF format. You can Read Online Slicing The Truth On The Computable And Reverse Mathematics Of Combinatorial Principles Lecture Notes Series Institute For Mathematical Sciences National University Of Singapore here in PDF, EPUB, Mobi or Docx formats.

Slicing The Truth

Author : Denis R Hirschfeldt
ISBN : 9789814612630
Genre : Mathematics
File Size : 33. 4 MB
Format : PDF, Kindle
Download : 354
Read : 934

Get This Book


This book is a brief and focused introduction to the reverse mathematics and computability theory of combinatorial principles, an area of research which has seen a particular surge of activity in the last few years. It provides an overview of some fundamental ideas and techniques, and enough context to make it possible for students with at least a basic knowledge of computability theory and proof theory to appreciate the exciting advances currently happening in the area, and perhaps make contributions of their own. It adopts a case-study approach, using the study of versions of Ramsey's Theorem (for colorings of tuples of natural numbers) and related principles as illustrations of various aspects of computability theoretic and reverse mathematical analysis. This book contains many exercises and open questions. Contents:Setting Off: An IntroductionGathering Our Tools: Basic Concepts and NotationFinding Our Path: K├Ânig's Lemma and ComputabilityGauging Our Strength: Reverse MathematicsIn Defense of DisarrayAchieving Consensus: Ramsey's TheoremPreserving Our Power: ConservativityDrawing a Map: Five DiagramsExploring Our Surroundings: The World Below RT22Charging Ahead: Further TopicsLagniappe: A Proof of Liu's Theorem Readership: Graduates and researchers in mathematical logic. Key Features:This book assumes minimal background in mathematical logic and takes the reader all the way to current research in a highly active areaIt is the first detailed introduction to this particular approach to this area of researchThe combination of fully worked out arguments and exercises make this book well suited to self-study by graduate students and other researchers unfamiliar with the areaKeywords:Reverse Mathematics;Computability Theory;Computable Mathematics;Computable Combinatorics

Induction Bounding Weak Combinatorial Principles And The Homogeneous Model Theorem

Author : Denis R. Hirschfeldt
ISBN : 9781470426576
Genre : Computable functions
File Size : 70. 72 MB
Format : PDF, Docs
Download : 435
Read : 620

Get This Book


Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory is the type spectrum of some homogeneous model of . Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.

Reverse Mathematics

Author : John Stillwell
ISBN : 9780691196411
Genre : Mathematics
File Size : 89. 39 MB
Format : PDF, Docs
Download : 142
Read : 1149

Get This Book


" This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach been developed. In Reverse Mathematics, John Stillwell gives a representative view of this field, emphasizing basic analysis--finding the "right axioms" to prove fundamental theorems--and giving a novel approach to logic. Stillwell introduces reverse mathematics historically, describing the two developments that made reverse mathematics possible, both involving the idea of arithmetization. The first was the nineteenth-century project of arithmetizing analysis, which aimed to define all concepts of analysis in terms of natural numbers and sets of natural numbers. The second was the twentieth-century arithmetization of logic and computation. Thus arithmetic in some sense underlies analysis, logic, and computation. Reverse mathematics exploits this insight by viewing analysis as arithmetic extended by axioms about the existence of infinite sets. Remarkably, only a small number of axioms are needed for reverse mathematics, and, for each basic theorem of analysis, Stillwell finds the "right axiom" to prove it. By using a minimum of mathematical logic in a well-motivated way, Reverse Mathematics will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics. "--

Top Download:

Best Books