# statistical computing with r

**Download Book Statistical Computing With R in PDF format. You can Read Online Statistical Computing With R here in PDF, EPUB, Mobi or Docx formats.**

## Statistical Computing With R Second Edition

**Author :**Maria L. Rizzo

**ISBN :**9780429527760

**Genre :**Business & Economics

**File Size :**70. 67 MB

**Format :**PDF, Kindle

**Download :**963

**Read :**1157

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. This second edition continues to encompass the traditional core material of computational statistics, with an

## Statistical Computing With R

**Author :**Maria L. Rizzo

**ISBN :**9781584885450

**Genre :**Mathematics

**File Size :**42. 13 MB

**Format :**PDF, ePub, Docs

**Download :**113

**Read :**434

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.

## Statistical Computing With R Solutions Manual

**Author :**Maria L. Rizzo

**ISBN :**1420076965

**Genre :**

**File Size :**78. 4 MB

**Format :**PDF, ePub, Docs

**Download :**643

**Read :**1247

## Statistical Computing With R Second Edtion

**Author :**Maria L. Rizzo

**ISBN :**1466553324

**Genre :**Business & Economics

**File Size :**86. 48 MB

**Format :**PDF, ePub, Docs

**Download :**524

**Read :**947

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. This second edition continues to encompass the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. It includes R code for all examples and R notes to help explain the R programming concepts. This edition also features a new chapter on nonparametric regression and smoothing.

## Learning Rstudio For R Statistical Computing

**Author :**Mark P. J. Van der Loo

**ISBN :**9781782160618

**Genre :**Computers

**File Size :**22. 62 MB

**Format :**PDF, Mobi

**Download :**917

**Read :**649

A practical tutorial covering how to leverage RStudio functionality to effectively perform R Development, analysis, and reporting with RStudio. The book is aimed at R developers and analysts who wish to do R statistical development while taking advantage of RStudio functionality to ease their development efforts. Familiarity with R is assumed. Those who want to get started with R development using RStudio will also find the book useful. Even if you already use R but want to create reproducible statistical analysis projects or extend R with self-written packages, this book shows how to quickly achieve this using RStudio.

## Rstudio For R Statistical Computing Cookbook

**Author :**Andrea Cirillo

**ISBN :**9781784396947

**Genre :**Computers

**File Size :**74. 43 MB

**Format :**PDF, ePub, Docs

**Download :**378

**Read :**1197

Over 50 practical and useful recipes to help you perform data analysis with R by unleashing every native RStudio feature About This Book 54 useful and practical tasks to improve working systems Includes optimizing performance and reliability or uptime, reporting, system management tools, interfacing to standard data ports, and so on Offers 10-15 real-life, practical improvements for each user type Who This Book Is For This book is targeted at R statisticians, data scientists, and R programmers. Readers with R experience who are looking to take the plunge into statistical computing will find this Cookbook particularly indispensable. What You Will Learn Familiarize yourself with the latest advanced R console features Create advanced and interactive graphics Manage your R project and project files effectively Perform reproducible statistical analyses in your R projects Use RStudio to design predictive models for a specific domain-based application Use RStudio to effectively communicate your analyses results and even publish them to a blog Put yourself on the frontiers of data science and data monetization in R with all the tools that are needed to effectively communicate your results and even transform your work into a data product In Detail The requirement of handling complex datasets, performing unprecedented statistical analysis, and providing real-time visualizations to businesses has concerned statisticians and analysts across the globe. RStudio is a useful and powerful tool for statistical analysis that harnesses the power of R for computational statistics, visualization, and data science, in an integrated development environment. This book is a collection of recipes that will help you learn and understand RStudio features so that you can effectively perform statistical analysis and reporting, code editing, and R development. The first few chapters will teach you how to set up your own data analysis project in RStudio, acquire data from different data sources, and manipulate and clean data for analysis and visualization purposes. You'll get hands-on with various data visualization methods using ggplot2, and you will create interactive and multidimensional visualizations with D3.js. Additional recipes will help you optimize your code; implement various statistical models to manage large datasets; perform text analysis and predictive analysis; and master time series analysis, machine learning, forecasting; and so on. In the final few chapters, you'll learn how to create reports from your analytical application with the full range of static and dynamic reporting tools that are available in RStudio so that you can effectively communicate results and even transform them into interactive web applications. Style and approach RStudio is an open source Integrated Development Environment (IDE) for the R platform. The R programming language is used for statistical computing and graphics, which RStudio facilitates and enhances through its integrated environment. This Cookbook will help you learn to write better R code using the advanced features of the R programming language using RStudio. Readers will learn advanced R techniques to compute the language and control object evaluation within R functions. Some of the contents are: Accessing an API with R Substituting missing values by interpolation Performing data filtering activities R Statistical implementation for Geospatial data Developing shiny add-ins to expand RStudio functionalities Using GitHub with RStudio Modelling a recommendation engine with R Using R Markdown for static and dynamic reporting Curating a blog through RStudio Advanced statistical modelling with R and RStudio

## Statistical Computing In C And R

**Author :**Randall L. Eubank

**ISBN :**9781466515376

**Genre :**Mathematics

**File Size :**20. 82 MB

**Format :**PDF, ePub, Docs

**Download :**187

**Read :**947

With the advancement of statistical methodology inextricably linked to the use of computers, new methodological ideas must be translated into usable code and then numerically evaluated relative to competing procedures. In response to this, Statistical Computing in C++ and R concentrates on the writing of code rather than the development and study of numerical algorithms per se. The book discusses code development in C++ and R and the use of these symbiotic languages in unison. It emphasizes that each offers distinct features that, when used in tandem, can take code writing beyond what can be obtained from either language alone. The text begins with some basics of object-oriented languages, followed by a "boot-camp" on the use of C++ and R. The authors then discuss code development for the solution of specific computational problems that are relevant to statistics including optimization, numerical linear algebra, and random number generation. Later chapters introduce abstract data structures (ADTs) and parallel computing concepts. The appendices cover R and UNIX Shell programming. Features Includes numerous student exercises ranging from elementary to challenging Integrates both C++ and R for the solution of statistical computing problems Uses C++ code in R and R functions in C++ programs Provides downloadable programs, available from the authorsâ€™ website The translation of a mathematical problem into its computational analog (or analogs) is a skill that must be learned, like any other, by actively solving relevant problems. The text reveals the basic principles of algorithmic thinking essential to the modern statistician as well as the fundamental skill of communicating with a computer through the use of the computer languages C++ and R. The book lays the foundation for original code development in a research environment.

## An Introduction To Statistical Computing

**Author :**Jochen Voss

**ISBN :**9781118728024

**Genre :**Mathematics

**File Size :**67. 96 MB

**Format :**PDF, ePub, Docs

**Download :**902

**Read :**174

A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced methods such as the reversible jump Markov chain Monte Carlo algorithm and modern methods such as approximate Bayesian computation and multilevel Monte Carlo techniques An Introduction to Statistical Computing: Fully covers the traditional topics of statistical computing. Discusses both practical aspects and the theoretical background. Includes a chapter about continuous-time models. Illustrates all methods using examples and exercises. Provides answers to the exercises (using the statistical computing environment R); the corresponding source code is available online. Includes an introduction to programming in R. This book is mostly self-contained; the only prerequisites are basic knowledge of probability up to the law of large numbers. Careful presentation and examples make this book accessible to a wide range of students and suitable for self-study or as the basis of a taught course

## Data Manipulation With R

**Author :**Phil Spector

**ISBN :**9780387747309

**Genre :**Computers

**File Size :**49. 43 MB

**Format :**PDF, ePub, Mobi

**Download :**346

**Read :**722

This book presents a wide array of methods applicable for reading data into R, and efficiently manipulating that data. In addition to the built-in functions, a number of readily available packages from CRAN (the Comprehensive R Archive Network) are also covered. All of the methods presented take advantage of the core features of R: vectorization, efficient use of subscripting, and the proper use of the varied functions in R that are provided for common data management tasks. Most experienced R users discover that, especially when working with large data sets, it may be helpful to use other programs, notably databases, in conjunction with R. Accordingly, the use of databases in R is covered in detail, along with methods for extracting data from spreadsheets and datasets created by other programs. Character manipulation, while sometimes overlooked within R, is also covered in detail, allowing problems that are traditionally solved by scripting languages to be carried out entirely within R. For users with experience in other languages, guidelines for the effective use of programming constructs like loops are provided. Since many statistical modeling and graphics functions need their data presented in a data frame, techniques for converting the output of commonly used functions to data frames are provided throughout the book.

## Modern Data Science With R

**Author :**Benjamin S. Baumer

**ISBN :**9781498724586

**Genre :**Business & Economics

**File Size :**86. 86 MB

**Format :**PDF, Kindle

**Download :**960

**Read :**1151

Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions. Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.