using r for data analysis in social sciences

Download Book Using R For Data Analysis In Social Sciences in PDF format. You can Read Online Using R For Data Analysis In Social Sciences here in PDF, EPUB, Mobi or Docx formats.

Using R For Data Analysis In Social Sciences

Author : Quan Li
ISBN : 9780190656218
Genre : Business & Economics
File Size : 84. 75 MB
Format : PDF, Docs
Download : 424
Read : 184

Get This Book


Statistical analysis is common in the social sciences, and among the more popular programs is R. This book provides a foundation for undergraduate and graduate students in the social sciences on how to use R to manage, visualize, and analyze data. The focus is on how to address substantive questions with data analysis and replicate published findings. Using R for Data Analysis in Social Sciences adopts a minimalist approach and covers only the most important functions and skills in R to conduct reproducible research. It emphasizes the practical needs of students using R by showing how to import, inspect, and manage data, understand the logic of statistical inference, visualize data and findings via histograms, boxplots, scatterplots, and diagnostic plots, and analyze data using one-sample t-test, difference-of-means test, covariance, correlation, ordinary least squares (OLS) regression, and model assumption diagnostics. It also demonstrates how to replicate the findings in published journal articles and diagnose model assumption violations. Because the book integrates R programming, the logic and steps of statistical inference, and the process of empirical social scientific research in a highly accessible and structured fashion, it is appropriate for any introductory course on R, data analysis, and empirical social-scientific research.

Statistics For The Social Sciences

Author : R. Mark Sirkin
ISBN : 141290546X
Genre : Social Science
File Size : 70. 99 MB
Format : PDF, ePub, Mobi
Download : 867
Read : 1066

Get This Book


Popular in previous editions, this Third Edition continues to help build students' confidence and ability in doing statistical analysis by slowly moving from concepts that require little computational work to those that require more. Author R. Mark Sirkin once again demonstrates how statistics can be used so that students come to appreciate their usefulness rather than fear them. Statistics for the Social Sciences emphasizes the analysis and interpretation of data to give students a feel for how data interpretation is related to the methods by which the information was obtained.

Quantitative Social Science

Author : Kosuke Imai
ISBN : 9780691175461
Genre : Social Science
File Size : 86. 79 MB
Format : PDF, ePub, Docs
Download : 164
Read : 1303

Get This Book


An introductory textbook on data analysis and statistics written especially for students in the social sciences and allied fields Quantitative analysis is an increasingly essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it—or if they do, they usually end up in statistics classes that offer few insights into their field. This textbook is a practical introduction to data analysis and statistics written especially for undergraduates and beginning graduate students in the social sciences and allied fields, such as economics, sociology, public policy, and data science. Quantitative Social Science engages directly with empirical analysis, showing students how to analyze data using the R programming language and to interpret the results—it encourages hands-on learning, not paper-and-pencil statistics. More than forty data sets taken directly from leading quantitative social science research illustrate how data analysis can be used to answer important questions about society and human behavior. Proven in the classroom, this one-of-a-kind textbook features numerous additional data analysis exercises and interactive R programming exercises, and also comes with supplementary teaching materials for instructors. Written especially for students in the social sciences and allied fields, including economics, sociology, public policy, and data science Provides hands-on instruction using R programming, not paper-and-pencil statistics Includes more than forty data sets from actual research for students to test their skills on Covers data analysis concepts such as causality, measurement, and prediction, as well as probability and statistical tools Features a wealth of supplementary exercises, including additional data analysis exercises and interactive programming exercises Offers a solid foundation for further study Comes with additional course materials online, including notes, sample code, exercises and problem sets with solutions, and lecture slides

Advances In Social Science Research Using R

Author : Hrishikesh D. Vinod
ISBN : 9781441917645
Genre : Business & Economics
File Size : 25. 75 MB
Format : PDF
Download : 114
Read : 251

Get This Book


Quantitative social science research has been expanding due to the ava- ability of computers and data over the past few decades. Yet the textbooks and supplements for researchers do not adequately highlight the revolution created by the R software [2] and graphics system. R is fast becoming the l- gua franca of quantitative research with some 2000 free specialized packages, where the latest versions can be downloaded in seconds. Many packages such as “car” [1] developed by social scientists are popular among all scientists. An early 2009 article [3] in the New York Times notes that statisticians, engineers and scientists without computer programming skills ?nd R “easy to use.” A common language R can readily promote deeper mutual respect and understanding of unique problems facing quantitative work in various social sciences. Often the solutions developed in one ?eld can be extended and used in many ?elds. This book promotes just such exchange of ideas across many social sciences. Since Springer has played a leadership role in promoting R, we are fortunate to have Springer publish this book. A Conference on Quantitative Social Science Research Using R was held in New York City at the Lincoln Center campus of Fordham University, June 18–19, 2009. This book contains selected papers presented at the conference, representing the “Proceedings” of the conference.

R Data Analysis Without Programming

Author : David W. Gerbing
ISBN : 9781317931676
Genre : Psychology
File Size : 84. 89 MB
Format : PDF, Mobi
Download : 656
Read : 995

Get This Book


This book prepares readers to analyze data and interpret statistical results using R more quickly than other texts. R is a challenging program to learn because code must be created to get started. To alleviate that challenge, Professor Gerbing developed lessR. LessR extensions remove the need to program. By introducing R through less R, readers learn how to organize data for analysis, read the data into R, and produce output without performing numerous functions and programming exercises first. With lessR, readers can select the necessary procedure and change the relevant variables without programming. The text reviews basic statistical procedures with the lessR enhancements added to the standard R environment. Through the use of lessR, R becomes immediately accessible to the novice user and easier to use for the experienced user. Highlights of the book include: Quick Starts that introduce readers to the concepts and commands reviewed in the chapters. Margin notes that highlight,define,illustrate,and cross-reference the key concepts.When readers encounter a term previously discussed, the margin notes identify the page number to the initial introduction. Scenarios that highlight the use of a specific analysis followed by the corresponding R/lessR input and an interpretation of the resulting output. Numerous examples of output from psychology, business, education, and other social sciences, that demonstrate how to interpret results. Two data sets provided on the website and analyzed multiple times in the book, provide continuity throughout. End of chapter worked problems help readers test their understanding of the concepts. A website at www.lessRstats.com that features the lessR program, the book’s data sets referenced in standard text and SPSS formats so readers can practice using R/lessR by working through the text examples and worked problems, PDF slides for each chapter, solutions to the book’s worked problems, links to R/lessR videos to help readers better understand the program, and more. An ideal supplement for graduate or advanced undergraduate courses in statistics, research methods, or any course in which R is used, taught in departments of psychology, business, education, and other social and health sciences, this book is also appreciated by researchers interested in using R for their data analysis. Prerequisites include basic statistical knowledge. Knowledge of R is not assumed.

Longitudinal Data Analysis For The Behavioral Sciences Using R

Author : Jeffrey D. Long
ISBN : 9781412982689
Genre : Social Science
File Size : 65. 92 MB
Format : PDF, Docs
Download : 241
Read : 417

Get This Book


This book is unique in its focus on showing students in the behavioral sciences how to analyze longitudinal data using R software. The book focuses on application, making it practical and accessible to students in psychology, education, and related fields, who have a basic foundation in statistics. It provides explicit instructions in R computer programming throughout the book, showing students exactly how a specific analysis is carried out and how output is interpreted.

Data Analysis For Social Science And Marketing Research Using Python

Author : Manoj Morais
ISBN : 0692860827
Genre :
File Size : 45. 57 MB
Format : PDF, ePub, Mobi
Download : 510
Read : 784

Get This Book


The book is written for researchers in social science and marketing field, especially for those with little or no knowledge in computer programming. Data analytics has become part and parcel in the contemporary technologically fast paced world. We have amazing tools and software that allow us to analyse data available in various formats. However, most of the popular paid software and packages for data analysis is not affordable or not even accessible for the students, researchers. This is true in the case of many NGOs and agencies how are involved in community based research in developing countries. We have popular open source platforms and tools such as R and Python for data analysis. This book makes use of Python because of its simplicity, adaptability, broader scope and greater potential in advanced data mining and text mining contexts. We found it as a need to educate and train the researchers from social science and marketing research background, so that they could make use of Python, a promising tool to meet simple to extremely complex data analyses needs free of cost. The learnings from this book will not only help them in doing their conventional data analyses but also enable them to pursue advanced knowledge in machine learning algorithms, text analytics and other new generation techniques with the support of freely accessible open source platforms. Since the objective of the book is to educate the researchers with no programming background, we have made every effort to give hands-on experience in learning some basic coding in Python, which is sufficient for the readers to follow the book. The step-by-step procedure to do various data processing and analysis described in this book will make it easy for the users. Apart from that, we have tried our level best to give explanations on specific codes and how they perform to get us the desired output. We also request you to give you valuable comments and suggestions on the book, via our blog, so that we could improve the same in the upcoming volumes. We commit ourselves to providing explanations to the readers' questions related to the codes and analysis provided in this book. The book specifically deals with data sets of row and column format, as the general format commonly used in social science research, which most of the researchers are familiar with. So we do not work with arrays and dictionaries, except in one or two occasions (only to make you familiar with that) instead prefer to make use of Excel data and pandas data frame. The book consists of thirteen chapters. The first chapter gives an introduction to Python and its relevance and scope in contemporary data analysis contexts. Ch. 2 teaches the basics and Python coding, Ch. 3-7, provide a step-by-step narration of how to enter data, process it, preliminary analysis and data cleaning with the help of Python, Ch.8-9, present data visualizations and narration techniques using Python; Ch.10.demonstrate how Python can use for statistical analysis. The remaining chapters are focusing on giving more real life situations in data analysis and the practical solutions to handle them. The exercises provided in the book are similar to real analysis situations, and that will help the reader for an easy transition to the data analyst jobs. The authors have taken utmost care identifying and providing solutions to all practical difficulties the readers may face while using Python for data analysis purpose. The authors have developed a series of codes and have incorporated them to make data processing and analysis convenient and easy for the researchers. The self-learning materials given in this book will help social science and marketing researchers to deepen their understanding of various steps in data processing and analyses and to gain advanced skills in using Python for this purpose.

Using R And Rstudio For Data Management Statistical Analysis And Graphics

Author : Nicholas J. Horton
ISBN : 9781482237375
Genre : Mathematics
File Size : 47. 69 MB
Format : PDF, Mobi
Download : 496
Read : 427

Get This Book


Improve Your Analytical SkillsIncorporating the latest R packages as well as new case studies and applications, Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition covers the aspects of R most often used by statistical analysts. New users of R will find the book's simple approach easy to understand while more

Research Methods And Data Analysis In The Social Sciences

Author : Thomas R. Herzog
ISBN : 0673991067
Genre : Psychology
File Size : 38. 95 MB
Format : PDF, Docs
Download : 757
Read : 952

Get This Book


Employing a clear, straightforward framework, this text focuses on the types of data most commonly produced by the basic research methods of observation, survey, and experiment, the text pairs each method chapter with a chapter on the analysis of the types of results usually obtained with that type of research.

Using R For Data Management Statistical Analysis And Graphics

Author : Nicholas J. Horton
ISBN : 1439827567
Genre : Mathematics
File Size : 31. 64 MB
Format : PDF, Docs
Download : 404
Read : 1021

Get This Book


Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphicsUsing R for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in R, without having to navigate through the extensive, idiosyncratic, and sometimes

Top Download:

Best Books